Callechs Machine Learning **CS156**

The biggest pitfall in theory is that the assumptions that are taken are dwarced from the reality of how we use machine learning in pradice Machine Learning Taradigms Theory Techniques * Supervised * VC Most Important stuff (Bound's that works well in gradice) Lo (Do we have enough data?) × unsupervised Methods * Bias ~ Voriance theory (Learning curves...) Models foregularization La (How de me provide foodbaar?) 6 linear * reinforcement neural netwoons validation "Computational Complexity O(n") 6 Too away from eractice " L (Touse on action, it the you if you active singles and a sat) Examples Onces Oraci SVM digitication (putting together diff. such tions) Nexest neighbours. (Nice benchmern) *RBF Lo Instead of getting the whole descent we guerry lota * Bayesian - Input proc x online 6 insted of getting the dataset, we get a shorn of the detail. (Random processes) [Random Function] SVD h Graphical Models (Lieurni zoint erab dist.) A diminute improvement in a machine learning problem can lead to massive problem. example marie recommendation. recommend (viewer, movie) - rating A problem con be tought as a machine learning problem IFF block a partiern *
We don't know how to pinit down mathematically. (If yes, might be better to we that) the marie Ex the rating. " How do we know? We don't know! But we can try to apply methods ond we can determine if we're learning or not. In fact we will use machine bearing to see if there's a patton

Basic Viemise of Learning · Supervised Learning -we've (input, correct attent) - The atput data is explicitely given "use a set of observations to undercover an underlying process" Ex: { (x1, 14), -, (xn, yn)} · Unsupervised Lectning we've (input,?) - Classify data without knowing the name of the bases. Example: Clustering. • How much is enough data? Lo In practice is not sth you control. We'll so in theory-more about that. #A way of getting a high bud representation (high patterns) of the input • The battle neck of machine lowning is its capacity of generalizing. · Reinforcement Lecrning we've (input, portial atest, grade for this atest) Is Learning Teasible? Reword for the autput. Ex: game simulators. · Robabilistic approach: Learning: Unknown function. 5:2-4 Earch bellet is a point xc 2, <u>red</u>: right hypotress h(x)= f(x) We pign red bullats from a blue red ballot. connection () two wrong myres to learning. Froto dist P on 2. La data is growted from P. blue: wrong hypothesis hert f (1). P(pice red bollot)=M fixed n! If we do N indeperp and get a prop of V red ballots, M=V? No and yes! and the second In fact, $P[1V-M1>E] \leq 2e^{-2E^{N}}$ Note: This example is verification, not learning. Solution: Having multiple bins ¥N,€>0 Ealled 😴 , 🐯 , 🚳 ... 🞯 Hoeffoling's inequality. A low of large numbers. bad went. Ein(ha) MA M2 M3 MM So 19=V is PAC. (Probable approximately correct.) (N is "in sample": Ein (N is out-of sample: Ear Ein(h): Error of approximation Eour(h) h: Error of approximation . The probability is bounded regardless of M. Using Ho effiling inequality · V≈M-→M≈V -202N P[IEin(h) - Ear(h)]>E] 520 In simple ait of sample performance. performance BUT, Hoeffoling's doesn't apply to multiple bins' Fortuctely we can take the warst case. And with that, we get just a M factor which becomes meaningless.

_inear Model Linear red - real value affect. Input rep.
 Line or class: f.
 Lincy Reg.
 Non linear transf. Eunifie adjulite addit line based andient's features. M Malon Regression at part $\rightarrow h(X) = W^{T}X$ put in $T^{T}H$ \cdot We use MSE: $(h(y) - f(y))^{2} \rightarrow E_{in} = \frac{1}{N} \|X_{in} - y\|^{4}$ $X = \begin{bmatrix} -x_{i}^{T} - y_{i}^{T} \\ -x_{i}^{T} - y_{i}^{T} \end{bmatrix}$ MNIST Dataset To minimize the error En(w)= full Xiv-y112 $\begin{array}{l} \nabla E_{in}(w) = 2 \frac{1}{p} \chi^{T}(\chi w - \gamma) = 0 \quad \text{(x)} \quad \overline{\chi}^{T}(\chi w - \chi) = 0 \quad \text{(x)} \quad \overline{\chi}^{T}(\chi w - \chi^{T}) \\ w = \chi^{T} \chi^{T} / \chi^{T} = (\chi^{T} \chi)^{T} \chi^{T} / \text{(sources)} \\ \text{(y)} \quad \overline{\chi}^{T} = (\chi^{T} \chi)^{T} \chi^{T} / \text{(sources)} \\ \end{array}$ Input rep: x (Xo, X1, -, X256) [1]"" -> Alinear model has 256 dim! Sol: Features (Estratuseful info) The linear regression dy is yet computing w=Xty Ex: Intensity and symmetry: x=(x,x,x2) (1s are reas intone than 8) PLA when the sort we perspire Linear reg for classification: Birry whiled finition on also red valued whe can do therease, the very poten is that it trast of all park into alme. So mire just harming the distince. So it you works as a gold stating while for the weylds Pocuet ener IL Changes Landors and If the orral -is feduced Sigh(w™x) Non-Linear Transformations Error Measures [[c]] = {0,17 cs the The null weight coordinas 1, else Is linear IN 20 We yest apply notion tony to the data. E(h, f) #error functionAlmost pointwise by: $e(h(x), f(x)) \xrightarrow{\text{everyles}} = (h(x) - f(x))$ Squeed error $= [[h(x) \neq f(x)]] \text{ Binagenery}$ $(x_1, x_2) \xrightarrow{\mathbf{E}} (x_1, x_2)$ $|\text{Insample error} : E_{in}(n) = \frac{1}{N} \sum e(h(x_n), f(x_n))$ · Data that wasn't knewly supposedule now If can be supported! Outsomple error $E_{w+}(h) = \mathbb{E}_{x}[e(h(x), F(x))]$ How to choose error massive - Jepends on the problem. (Application Bonoin question) g=sign(~z) IF we don't know What to do, use PLAUSIBLE means or FRIENDLY MEARINES Squarederrar (crawson no.se) Zanvex gotin. Foution \$(×)= g (\$(×)) $X = (X_0, X_1, -, X_d) \xrightarrow{a} Z^* (Z_0, Z_1, -, Z_d)$ / Powerful, but general inter on to torribly poor Noisy largets X1,-,Xn -Z1,-,ZN 311->3N_____ 311->3N Torget function is not a function f(x1)=0, f(x2)=2, where x = x2. No the weights creakly in Z $W = (\omega_0, \omega_{\pm, -}, \omega_{\delta})$ Sol use "taget distribution" P(y1x) $P(x) \neq P(y|x)$ (x,y) is now def by a joint distribution. Noisy taget: f(x) + E => f(x) = |E(Y|x) quartifics relation importance of X Merging P(x)P(y|x) as P(x,y) mixes two concepts

We need a metric to manue the sophisticitien of the model - dire Ein is whole a proxy to East. Citor East (9) = 0 is achieved through: 1 East (9)≈ Ein(9) $E_{in}(q) \approx 0$ model complexity ++ -> Ein++ but Learning is reduced to two guestions Training vs lesting. Eat-Ein ++ - Gon we assure that Easty). I doe to Exce → Con we make Ein(3) Smoll erough? Testing Oss: Sometimes the impossible to IP[IEin-Eout > €] ≤ 2exp(-2EN). have Eastly 20. Ex: steer mont. Having an error of 45% would more for rich already. Training IP [IEin-Eoutl>E] ≤2Mexp(-2€N) Apply My (N) to perceptrons Goyective: Find a better bound than M We have 2^3 ways to second t with a line. $M_{\gamma\gamma}(3)=2^3$ M comis from \mathbb{B}_{ad} events: $\mathbb{P}[\mathbb{B}_1 \circ \dots \otimes \mathbb{B}_m] \leq \mathbb{P}[\mathbb{B}_1] \dots \mathbb{P}[\mathbb{B}_n]$ no overlaps: M In practice, Bad Events overlaps! And for m_H(4)? La AE out change is ±1 areas AE in: change of lobds in data point • we cont make this dichotiony with a line! • \mathcal{A} In fact, $\mathcal{M}_{24}(4) = 14$ $|E_{in}(h_1) - E_{out}(h_1)| \approx |E_{in}(h_2) - E_{out}(h_1)|^2$ f there is late here, the Ein changes. If his are almost the same, there is almost no change in DE:n! (Bustration of the growth partion: Example 7: h:1R-1623 (Bustine Rogs) A: h:1R-1623 h(x)= sgn(x-a) M24(N)=N+1 $m_{H}(N) = \binom{N+1}{2} + 1$ Lo From this constellation of points, how mony potterns of red & live on Iget? (Positive Intervals) The Looolxx What at assignin Sopporate setre h: R - 1+23 -Number of dichotomies (Convex sets) h(x)=+1 is convex. h(x)=0 not revex h: N - {±13 //hypothesis h(x) = 0 not covex. Bot Conex h: {x11-, XN]-{±1} //divotany Sol: pot the N parts in a circle, w get 2" dicholow is (max beand!) M 2(N) = 2^N The number of hypothesis 1771 can be Infinite, but the number of dichotomies is at most 2" Lo When this happens we say 17 shatters the points The growth function 71 give you a budget N, chose where to place N points to the dicholants or The growth function counts the most dichotomies on any Noonts $m_{\mathcal{H}}(N) = \max_{\boldsymbol{x}_{1},..,\boldsymbol{x}_{N} \in \mathcal{Y}} \left| \underbrace{\mathcal{H}(X_{1},..,X_{N})}_{\text{set of divisiones.}} \right|$ $|\mathsf{t}_{\mathsf{satisfies}}|_{\mathsf{m}_{\mathsf{H}}}(\mathsf{N}) \leq 2^{\mathsf{N}}$

Breaupoint Brechpoint positive ages: K-2 execomptos positive laboratis: K-3 convex stas: 14-400 P[IEin-Earl>e]<2Me^{26=N} If no data set of size K can - The point where you fail to get all point where you fail (ve can't shather the dely agreen). be shattered by 77, then Mis · Let's replace M with MH(N). a break point of H · If Mzz(N) has polynomial order. I've war lowest n/mp(k) < 2" Just proving that MH(N) is polynomial. is enough to prove that decining is possible. How to replace M in heeffdings inequality? Le main point Zbreak point → MH(N)=2" = break point → MH(N) = P(N) $\mathbb{P}[|E_{in}(s) - E_{out}(s)| > \epsilon] \leq 4 m_{H}(2N) e^{\frac{1}{8}\epsilon^{2}N}$ · This bound can be improved. But this is enough to prove that We want to bound $m_{H}(N)$ tactic: $m_{H}(N) \leq \dots \leq a$ polynomial. learning is possible. Key specifity: $B(N, \kappa)$: Max non of debitions on N point, with box port κ b Bin J Per with from this. $M_{\mathcal{H}}(N) \leq \sum_{i=1}^{N-1} \binom{N}{i}$ Obser bound for orghing with know point κ . C'est Vapnie - Chervonenuis Inequelity. Max power is N^{H-1}- constant! (A polynomial >My(N) is a polynomial The VC dimension Def: The VC dimension of an hypothesis set H dented by duc(H) is the largest value of N for which My(N)=2" N≤dvc(7+)→7+ con shatter N conts. $\longrightarrow m_{\mathcal{H}}(N) \leq \sum_{\substack{\text{loc} \ (N) \\ \text{opt}}} (N)$ K> dvc(H) → K is a breaupoint of H Ex: Positive rays: du=1 2D perceptrons: duc=3 Convex sets: duc= 00 VC dimension and Learning. dvc(H) < a -> ge H will generalize. > This is independently from the Learning alg & Input distribution & target puction. > You will generalize with high probability with the next data.

Example: For d-dim perceptions duc=d+1 > Proop: Let N=d+L, X= [x]= [101 0]. For any y [1]]= [11] d+1 is also the number of parameters in the perception. Lets find w/sign(Xw)= y. We can do Xw=y. Because Xinv, w=Xy! Thus, we can shafter these dil points ---- dive > d+1 For d+2, more points than dim - X3= Zaixi, (Lin. dep), not all the ai= 0. The non-zero a, get y = sign(a,) and x, gets y=-1. No perception can implement x.= Tax. ______ thir dichotany! Interpreting the VC dimension. $x_{3} = \sum a_{i}x_{1} \rightarrow w^{T}x_{3} = \sum a_{i}w^{T}x_{i} \cdot lf \quad y_{i} = sign(w^{T}x_{i}) = sign(a_{i}), \text{this } a_{i}w^{T}x_{i} > 0$ So $wTx_{0} = \sum \alpha_{i}wTx_{i} > 0 - 3s = sign(wTx_{0}) = +1$ # of perans in model ~ degrees of freedom. dive ~ binnerg degrees of freedom (if so an secons date a not) 2- How mony data points we need $VCineq: P[IEin(8) - E_{out}(8)] > \epsilon] \le 4m_{H}(2N)e^{\frac{1}{8}N}$ Obs Parameters may not contribute degrees of freedom.
P → *P* → *P* → *P P* → *P P* → *P P P* → *P P* smelticitin If we want certain E and S, hav does N depend on duc? Cg(N)=Nden $\mathbb{P}\left[|\mathsf{E}_{ot}-\mathsf{E}_{in}|>\varepsilon\right]\leq 4m_{H}(2N)e^{-\frac{1}{2}\varepsilon^{2}N}$ Get E(S) E= V B In(4m 31(2N) = D r"S'N Whit piok 1-5; $|E_{art}-E_{in}| \leq \Omega(N;H,S)$ $\stackrel{\leftarrow}{=} E_{out} - E_{in} \leq \Omega(N, H, S) \rightarrow E_{out} \leq E_{in} + \Omega$ Rescale: New > Bigger VC dimension - Need for most samples duc OK number of samples needed to obtain a certain performance. Rule of thimb: N > 10 duc - Na duc b Number of simples needed is proportical to due

Bias Variance Tradeoff	· · · · · · · · · · · · · · · · · · ·
Approximation - Generalization tradeoff.	
Small Eour: good approx of gast of sample	
More complex H-Better choice of approximating g Less complex H-Better choice of generalizing att of comple	· · · · · · · · · · · · · · · · · · ·
Selt nover happens	
The biasuctionce is a new approach	
VC analysis: East 5 Ein + D. Biasvariance: Decompose East into 5 How well Happines Interfactoreal-malled tagets Manual Source and and the source and the sou	nctes f 1 in on a good he7}
$\mathbb{E}_{out}(g^{(0)}) = \mathbb{E}\left[\left(g^{(0)}(\mathbf{x}) - g(\mathbf{x})\right)^{2}\right]$	· · · · · · · · · · · · · · · · · · ·
-	
I want to get rid of (0), my dataset.	
$ want to get r:d ar (0), my detail. $ $ \mathbb{E} \left[E_{out} \left(9^{(9)} \right) \right] = \mathbb{E} \left[\mathbb{E} \left[\left(9^{(9)} \times 1 - \frac{1}{3} (\times) \right)^{2} \right] \right]_{\mathcal{F}_{v}} = \mathbb{E} \left[\mathbb{E} \left[\left(9^{(9)} \times 1 - \frac{1}{3} (\times) \right)^{2} \right] \right] $	or (lot (l)
$ \text{want to get r:d ar (0), my detect.}$ $\mathbb{E}\left[\text{E}_{\text{out}}\left(g^{(0)}\right)\right] = \mathbb{E}_{\text{D}}\left[\mathbb{E}_{\text{x}}\left[\left(g^{(0)}(x) - g(x)\right)^{2}\right]\right]_{\text{want to get r:d ar (0)}}$ $= \mathbb{E}_{\text{x}}\left[\mathbb{E}\left[\left(g^{(0)}(x) - g(x)\right)^{2}\right]\right]$ $\text{Lets define } \overline{g}(x) := \mathbb{E}\left[g^{(0)}(x)\right] \longrightarrow \mathbb{E}\left[\left(g^{(0)}(x) - g(x) + g(x) - g(x)\right)^{2}\right] + \left(\overline{g}^{(0)}(x) - \overline{g}(x)\right)^{2}\right] + \left(\overline{g}^{(0)}(x) - \overline{g}(x)\right)^{2}\right] + \left(\overline{g}^{(0)}(x) - \overline{g}(x)\right)^{2}\right]$	$\left[\left(\frac{1}{2}\right)^{2}\right] = \prod_{i=1}^{D} \left[\left(\frac{1}{2}\left(\frac{1}{2}\right)^{2} - \frac{1}{2}\left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\left(\frac{1}{2}\right)^{2}\right)^{2} + \left(\frac{1}{2}\left(\frac{1}$
$ \text{want to get r:d af (0), my detacet.}$ $\mathbb{E}\left[\text{E}_{\text{out}}(g^{(k)})\right] = \mathbb{E}_{D}\left[\mathbb{E}_{X}\left[\left(g^{(k)}(x) - g^{(k)}\right)^{*}\right]\right]_{\mathcal{F}_{X}} \text{ with integrat}$ $= \mathbb{E}_{X}\left[\mathbb{E}\left[\left(g^{(k)}(x) - g^{(k)}\right)^{*}\right]\right]$ $\text{Lets define } \overline{g}(x) := \mathbb{E}\left[g^{(k)}(x)\right] \longrightarrow \mathbb{E}\left[\left(g^{(k)}(x) - g^{(k)}\right)^{*}\right] + \left(\overline{g}^{(k)}(x) - g^{(k)}\right)^{*}\right] + \left(\overline{g}^{(k)}(x) - g^{(k)}\right)^{*}\right] + \left(\overline{g}^{(k)}(x) - g^{(k)}(x)\right)^{*}\right]$ $\text{Vor}(x)$ $\text{Vor}(x)$ $\text{Vor}(x)$	on: $(0e_{f(L)})$ $)^{2}] = \bigoplus_{\mathcal{D}} \left[\left(g_{\mathcal{D}}^{(n)} - \overline{g}_{\mathcal{D}}(n) \right)^{2} + \left(\overline{g}_{\mathcal{D}}^{(n)} - g_{\mathcal{D}}(n) \right)^{2} + 2 \left(g_{\mathcal{D}}^{(n)} - \overline{g}(n) \right)^{2} + \left(\overline{g}_{\mathcal{D}}^{(n)} - g_{\mathcal{D}}(n) \right)^{2} + 2 \left(g_{\mathcal{D}}^{(n)} - \overline{g}(n) \right)^{2} + \left(\overline{g}_{\mathcal{D}}^{(n)} - g_{\mathcal{D}}(n) \right)^{2} + 2 \left(g_{\mathcal{D}}^{(n)} - g_{\mathcal{D}}^{(n)} \right)^{2} + \left(\overline{g}_{\mathcal{D}}^{(n)} - g_{\mathcal{D}}^{(n)} \right)^{2} + 2 \left(g_{\mathcal{D}}^{(n)} - g_{\mathcal{D}}^{(n)} \right)^{2} + \left(\overline{g}_{\mathcal{D}}^{(n)} - g_{\mathcal{D}}^{(n)} \right)^{2} + 2 \left(g_{\mathcal{D}}^{(n)} - g_{\mathcal{D}}^{(n)} \right)^{2} + $
$ \text{want to get r:d of (0), my detect.}$ $\mathbb{E}\left[\text{E}_{out}(g^{(0)})\right] = \mathbb{E}_{D}\left[\mathbb{E}_{x}\left[\left(g^{(0)}(x) - g(x)\right)^{2}\right]\right]_{x} \text{ wert integrations}$ $= \mathbb{E}_{x}\left[\mathbb{E}\left[\left(g^{(0)}(x) - g(x)\right)^{2}\right]\right]$ $\text{Lets define } \overline{g}(x) := \mathbb{E}\left[g^{(0)}(x)\right] \rightarrow \mathbb{E}\left[\left(g^{(0)}(x) - \overline{g}(x) + \overline{g}(x) - g(x)\right)^{2}\right] + \left(\overline{g}^{(0)}(x) - \overline{g}(x)\right)^{2}\right] + \left(\overline{g}^{(0)}(x) - \overline{g}(x)\right)^{2}\right]$	on: $(\log_{f(1)})$ $\binom{1}{2} = \prod_{i=1}^{n} \left[\left(\frac{1}{2} \binom{1}{2} - \overline{2} \binom{1}{2} \right)^{2} + \left(\overline{2} \binom{1}{2} - \frac{1}{2} \binom{1}{2} \right)^{2} + \left(\frac{1}{2} \binom{1}{2} - \frac{1}{2} \binom{1}{2} \right)^{2} + \left(\overline{2} \binom{1}{2} - \frac{1}{2} \binom{1}{2} \right)^{2} + \left(\frac{1}{2} \binom{1}{2} - \frac{1}{2} \binom{1}{2} \right)^{2} + \left(\overline{2} \binom{1}{2} - \frac{1}{2} \binom{1}{2} \right)^{2} + \left(\frac{1}{2} \binom{1}{2} \binom{1}{2} - \frac{1}{2} \binom{1}{2} \right)^{2} + \left(\frac{1}{2} \binom{1}{2} - \frac{1}{2} \binom{1}{2} \binom{1}{2} \right)^{2} + \left(\frac{1}{2} \binom{1}{2} \binom{1}{2} - \frac{1}{2} \binom{1}{2} \binom{1}{2} \right)^{2} + \left(\frac{1}{2} \binom{1}{2} \binom{1}{2} - \frac{1}{2} \binom{1}{2} \binom{1}{2} \right)^{2} + \left(\frac{1}{2} \binom{1}{2} \binom{1}{2} + \frac{1}{2} \binom{1}{2} \binom{1}{2} + \frac{1}{2} \binom{1}{2} \binom{1}{2} \binom{1}{2} + \frac{1}{2} \binom{1}{2} \binom{1}{2} \binom{1}{2} + \frac{1}{2} \binom{1}{2} \binom{1}{2$
$ \text{went to get r:d of (0), my detect.}$ $\mathbb{E}\left[\left[\text{Eout}\left(g^{(0)}\right)\right] = \mathbb{E}\left[\left[\mathbb{E}\left[\left(g^{(0)}(x) - g(x)\right)^{2}\right]\right]_{\mathcal{F}}\right] \text{ sust integent}\right]$ $= \mathbb{E}\left[\left[\mathbb{E}\left[\left(g^{(0)}(x) - g(x)\right)^{2}\right]\right] = \mathbb{E}\left[\left(g^{(0)}(x) - g(x)\right)^{2}\right] + \left(g^{(0)}(x) - g(x)\right)^{2}\right]$	$ex.! (lef G(J))$ $)^{2} = \left[= \left[\left(g(x) - \overline{g}(x) \right)^{2} + \left(\overline{g}(x) - g(x) \right)^{2} + 2 \left(g(x) - \overline{g}(x) \right) \left(\overline{g}(x) - g(x) \right)^{2} \right]^{2} \right]$ $(x) - g(x))^{2}$ $ris my best conditions$ $rom my best conditions$ $rom my best conditions$ $rom g because$ $(x)]$ $Example: g[-1,1] \rightarrow IR, g(x) = sin(\pi x)$ $Our training dataset: N = 2. (Lol!)$ $Hyp. set: Ho: h(x) = b$

Learning Curves VC Analysis / Bias Variance Dataset D of size N. How does Ein and East very with N? generalization error voriance Expected Error Expected Error Ein Gias in-sumple error the transformations! 7 A simple model N A Complex model Non-lineor transformations Locking at the data BEFORE choosing the model O can be hazardaus to your Earr with this we can do: Z=卫(×) Yo just "snooped" at the data. Is The dataset with the dive guaratees is the one you had before. DATA SNOOPING $e_{\mathcal{X}_{1}} = (1, \mathcal{X}_{1}, \mathcal{X}_{1}, \mathcal{X}_{1}, \mathcal{X}_{1}, \mathcal{X}_{2}) = (20, -1, 2\tilde{a})$ Obs: Finch hyp on 2. b dvc≤d+1 . Lowe're limited to Logistic Regression Logistic function $\Theta_{0} =$ S=WTX: 20 h(x) linear chargination function function function linear regression: O(s)= es //soft theshold. 1+05 "I models uncortanty" Whe pick this because is great for optimization `logistic acyression: 🖉 This is also added signaid signal: WTX (remains linear) $h(x) = \Theta(s)$ is interpreted as a probability. Example: (x,y) y is noisy P(31x) = { \$(x), for year $\Theta(-s) = 1 - \Theta(s)$ TTP(ynlxn) My target is f: 12 - 20,13 erdebility P(y1×)=O(yw*x) Learn $g(x) = \Theta(w^T x) \approx g(x)$ TTO(ynwtxn) (Lidelihood) How we build on orrer massure in this context? - Plausible error measure based on luelihood. -sive want to maximize this wit w. > We max the by livelihood instead (Equivalent). And we prime re with I instead To minimize this, $m: \mathbf{A} = \frac{-1}{N} \ln \left(f(\Theta(y_n \mathbf{w}^T \mathbf{x}_n) = \frac{1}{N} \sum \ln \left(\frac{1}{\Theta(y_n \mathbf{w}^T \mathbf{x}_n)} \right) \right)$ * there is no close from solution Iterative Method! L Gradient descent. $E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \ln(1 + e^{2i\mathbf{w}\cdot\mathbf{x}})$ cross-ontropy error e(h(xn), yn)

Neural Netwo	orks // features from features
biological function ~ les biological structure	SGD
Key: combining perceptrons	$E_{in}(\omega) = \frac{1}{N} \sum \ln(1 + e^{\frac{1}{2}n\omega^{T}x_{n}}) / \log istic regression$
(1) $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	We pick a small short (bothsize) of the liteset and do gradient decent. (Theory: $E_n(\nabla g(x_n, y_n)) = E_{in}!$
A multiled perception implementing this (1)	Parantages of Son Transmer of one. I randomization (name in access of silly heal minore) 3. simple
	SGD @ NN
Tranget	Error an samele: e(h(xn),gn)= e(w) We need the goodient:
heat Suger Braceptions & paceptions	$\nabla e(w) : \frac{\partial e(w)}{\partial w_{i}^{(v)}}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	We can evaluate <u>declum</u>) analytically or numer: cally. Dur, ⁽¹⁾
hilden Royers 1 SSL	$ = \frac{9m_{(t)}^{(k)}}{9m_{(t)}^{(k)}} = \frac{9n_{(t)}^{(k)}}{9m_{(t)}^{(k)}} = \frac{9n_{(t)}^{(k)}}{9m_{(t)$
$ \begin{aligned} & \left\{ \begin{array}{l} & 1 \leq l \leq L \\ i & 1 \leq l \leq d^{n_1} \text{ inputs / idealogy, in a conduct!} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \right\} \left\{ \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \right\} \left\{ \begin{array}{l} & \\ & \\ & \\ & \\ & \\ \end{array} \right\} \left\{ \begin{array}{l} & \\ & \\ & \\ & \\ & \\ \end{array} \right\} \left\{ \begin{array}{l} & \\ & \\ & \\ & \\ & \\ \end{array} \right\} \left\{ \begin{array}{l} & \\ & \\ & \\ & \\ & \\ \end{array} \right\} \left\{ \begin{array}{l} & \\ & \\ & \\ & \\ & \\ \end{array} \right\} \left\{ \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \right\} \left\{ \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \right\} \left\{ \begin{array}{l} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	$x_{1}^{(4-1)} \xrightarrow{\partial S_{0}^{(4)}} \qquad $
$\boldsymbol{\mathcal{X}}_{\boldsymbol{\vartheta}}^{(\mathbf{t})} = \Theta(\boldsymbol{S}_{\boldsymbol{\vartheta}}^{(\mathbf{t})}) = \Theta\left(\sum_{i=0}^{\mathbf{t}^{(\mathbf{t}-1)}} \boldsymbol{\omega}_{\boldsymbol{\vartheta}}^{(\mathbf{t}-1)}\right)$	$\mathcal{C}_{1}^{(m)} = \mathcal{C}(h(x_{n}), y_{n})$
Apply z to $z_{\pm}^{(0)} \dots z_{\pm}^{(0)} \rightarrow z_{\pm}^{(1)} = h(x)$	The value
Algo: Bacupropendition. 1-Init weights with RANDOMLLY. 2- For L-2012 de 3	$\frac{\partial \mathcal{L}^{(u)}}{\partial \mathcal{S}_{1}^{(u)}} \times \frac{\partial \mathcal{S}_{2}^{(u)}}{\partial \mathcal{X}_{1}^{(u+1)}} \times \frac{\partial \mathcal{X}_{1}^{(u-1)}}{\partial \mathcal{S}_{1}^{(u+1)}} \qquad \mathcal{R}_{1}^{(u)} = \mathcal{O}(\mathcal{S}_{1}^{(u)})$
Pick the $\{1, N\}$ Forward: compute ALL $\mathcal{X}_{i}^{(6)}$ Becomistic compute ALL $\mathcal{X}_{i}^{(6)}$ Decomistic compute ALL $\mathcal{X}_{i}^{(6)}$ Update $W_{i}^{(6)} \leftarrow W_{i}^{(6)} \rightarrow \pi^{(6+2)}$	$\sum_{k=1}^{n} \sum_{i=1}^{n} (i) = 1 - O(i) \text{ for tanh.}$
$ \underset{\text{(eturn } \omega_{i_{\mathcal{S}}}^{(u)}}{\Longrightarrow} \qquad \qquad$	$= (1 - (z_{i}^{(e-1)})^{2}) \sum_{i=1}^{d^{(e)}} \omega_{i\delta}^{(e)} S_{\delta}^{(e)} $ // For tanh
	· · · · · · · · · · · · · · · · · · ·

.Example: Overfitting >Using a 4-order polyn is an oversit. > Overfitting is what separate ML ancteurs prom projessands Training a NN Querfitting = Badgeneralization CITIC Def: Overfitting: fitting the data more than is worranted - Culerit: fitting the roise (hormful) overfitting: Eint E erros r 10+ 0094 (2there) · tuget: Soth cades colly 6 2nd pely Noisless, high order early > With erough N, the 77to model is a better fit. But before, we had smaller error at of simple with 712. Ein 0029 10-3 East 0.120 7680 Y Why? If these's no nase! O Lo There is crather type of nose... Overfitting Noise Heatmap bias - Deterministic noise: the port g 11 connot capture. Coverpitting Stochast Deterministic N. Noise number of data points N1: Overfitting • It depends on 77 and is fixed for a given x. stochastic noise 1: deterministic noise 1: Querfittinky Bices variance decomposition with noise: $\mathbb{E}_{p\times}\left[\left(\tilde{g}(x)-\tilde{g}(x)\right)^{2}\right]+\mathbb{E}_{x}\left[\tilde{g}(x)-g(x)\right)^{2}\right]+\mathbb{E}_{\left[\left(\tilde{e}(x)\right)^{2}\right]}$ Fitting the noise is live filling to a pattern that doesn't exist. The deterministic noise comes from the limitations of our hypothesis set H.

Variations of weight decay: 1-Emphasize certain weights: ZYqwq Examples: $V_q = 2^q$ //low-oder fit. $V_q = 2^q$ //high order fit. > In Neural Networks Different Vifor each loyer. 2. We play the invorse: Weight growth! E out I weight decert X Terrible Idea. E out I Best L= O. In general Constrain lanning => toucrds smoother hypothesis Rule of think. statiastic noise is "high frequency" deterministic rose is also non-smooth > We want to peralize the noise, not the signal. General form of Augmented Error Choosina A Regularizer Call reg. $\Omega(h) = \Omega$, we marmize $E_{aug}(h) = E_{in}(h) + \frac{1}{N} \Omega(h)$ > We more to smoother postures because the noise is not smooth. Eart is better than Ein as a proxy for East. > If Ω is bad, we have k to chear If we have it wrong Neural Network regularizers Weight decay: If all weights are small we endy with a linear protion conversed (f linear, g linear - for sincer). As weather increase we get a fill back function Weight Shinination: fewer weights - smaller VC dimension // Big weatts are left alone, small weatts are proved toward zeto. Soft weight elimination: $\Omega(\mathbf{w}) = \sum_{\mathbf{w},\mathbf{w}} \frac{\langle \mathbf{w},\mathbf{w} \rangle}{\mathbf{P}^2 + \langle \mathbf{w},\mathbf{w} \rangle}$ Early stopping as a Royulaizer > Regularization through the optimizer! > when to stop? onêt ! The optimal K > Déterministic roie tehanes climat carthy as 14 11 were stachastic noise. E ot Q4=100 ho noise, optimel 40 STOCHASTIC NOISE Deterministic Noise

<u>s</u>
nstant
) () (
• •
• •
· ·
· · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
 . .<
 . .<
 . .<

→ Maxthe morgin. →The solution. Nonlineer transforms. (When data is not in sep.) Line for classification? Support Vector machine * h BIGGER - BETTER > Best model before deep larning. Dichotomis with fat margin · If we restrict the morgin, we get a smaller VC dimension. (Restrict rum. of dehotive) Let Xn be the neverst point to the gone wix+b=0 Technicalities Normalize W: IWTXn+b1=141 Taue at Us panw (sue dd here) WTX+b=0 (no zo) To compute the distance: $\frac{1}{1} = \frac{1}{1}$ $\frac{1}{1} = \frac{1}{1}$ $\frac{1}{1} = \frac{1}{1} =$ The optimization problem $(1) \begin{cases} max \frac{1}{11} \\ \text{ot} \\ \text{st} \\ \text{min} \\$ this is prendber. Obs: |WTXn+b|= yn (WTXn+b) // we only take w that classific correctly. $h \rightarrow \nabla w h = w - \sum dn y_n \chi_n = 0 \leftrightarrow w = \sum_{\alpha_n y_n \chi_n}^{n}$ This is a Constrained Optimizertian problem! $\frac{\partial \mathcal{L}}{\partial b} = -\sum_{n=1}^{\infty} \alpha_n y_n = 0 \iff \sum_{n=1}^{N} \alpha_n y_n = 0$ But we need equalities... " \rightarrow Add shace variables! We write the dual formulation of the problem · This is similar to the regularization problem Substitute (1) & (2) in A(w, b, a)CONSTRAINT Regularization Ein www SVM www Ein $\mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_n x_n^T x_m$ where maximize with a subject to an 20 th think bowith respect to an 20 th think bowith respect and the Kyn=0 We thus, formulate the lagrangian of ar problem (1) $\begin{cases} \min \frac{1}{2} w^{T}w & \swarrow \\ \sup_{y \in W^{T}x_{n} \neq b} \frac{1}{2} & \swarrow \\ w.r.t + to w and b and maximise w.r.t + each an >0 \end{cases}$

The solution to the problem (quadratic programming)
We have max $\sum_{n=2}^{\infty} a_n - \frac{1}{2} \sum_{n=2}^{\infty} y_n y_m \alpha_n \alpha_n x_n x_n$ For your constrained.
min $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} y_{a} y_{a} \alpha_{a} \alpha_{n} \times \frac{1}{2} x_{n} = \frac{1}{2} \alpha_{n}$ (min $\frac{1}{2} \alpha_{n} = \frac{1}{2} \alpha_{n} \times \frac{1}{2} \alpha_{n} = \frac{1}{2} \alpha_{n} = \frac{1}{2} \alpha_{n} + \frac{1}{2} \alpha_{n} = \frac{1}{2} \alpha_{n$
) 2 2 (; · · · · · · · · · · · · · · · · · ·
St yTax=0 Osaze 0 Osaze 0 Dis: When N is too large (N>10000) we need to use other here is this,
Using Quadratic programming, we get the solution $\alpha = \alpha_1, -, \alpha_N$
W=Žanynkn
KKT conditions: For n=1,-,N
an(yn(w'Xn+b)-1)=0 There are a some a 20 => Their respective Xn
Support Vatures
$W = \sum_{n=1}^{\infty} w_n + \sum_{n=1$
(0) When a lat less acconders thom a liner model (#4,->0)
Now we salve for 6 using any SV
$y_n(w^T x_n + b) = 1$
inear transformations X->7
(i)e weak with z instead of x: Z.= Obse : #ox has nothin to do
$\rightarrow \mathcal{L}(\alpha) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{n=1}^{N} \frac{1}{2} \sum_{n=1}^{N} $
The support vectors in 2 source
· Support vectors live in Z space
· In & space,
pre ma geo q sv , , , , , , , , , , , , , , , , , ,
tuten build me true of 11.

Kernel Methods	1-Nernel tricn 2-Softwingin	• •	· ·	· ·	•	• •	•	• •	•	• •	• •	
> Introducing : Infinite dim spaces!			• •		•		•		•			
-> The wornel trian.												
$/(\pi) = \sum_{n=1}^{N} \alpha_n - \pm \sum_{n=1}^{N} \sum_{n=1}^{N} 4n 4n \alpha \alpha_n - \sum_{n=1}^{N} 2n$						• •		• •		• •		
$st \alpha_n = 0$			• •		•		•		•			
q(x)= sign (WTZ+6), where w= 5 anyn	izn and big			• •		• •					-	
$Z_{nis} SV$,						• •		• •		
$Z^T Z^2 = K(x, x^2)$ (the nervel) Example: $x \cdot (x, x_2) \rightarrow 2$ and	ada çêy.		• •	• •	•		•		•			
لاریک شام : تحمد	1,***) 4+×1,×2+×1×1×1 ×**×××							• •		• •		
Letrich: conve compute N(x,x)				• •	•			• •				
Ex: Consider: K(xx)=(A+VTY)2- (A+VY'+Y V')2	• • • • •			• •	•	• •	•		•			
$= 1 + \lambda_i \lambda_i + \lambda_2 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_4 + \lambda_3 \lambda_3 \lambda_3 \lambda_3 \lambda_3 \lambda_3 \lambda_3 \lambda_3 \lambda_3 \lambda_3$												
This is an inner ρ_{i} $(1, \mathbf{x}_{i}^{2}, \mathbf{x}_{i}^{2}, \mathbf{x}_{i}^{2}, \mathbf{x}_{i}^{2}, \mathbf{x}_{i}^{2}, \mathbf{x}_{i}^{2}, \mathbf{x}_{i}^{2})$	· · · · ·		• •	• •	•			• •		• •		
$(1, x_1^{\prime}) \times (1, y_2^{\prime}) \times (1, $				• •				• •		• •	0 1	
The partitionial hernel.				• •	•	• •						
\mathcal{N}^{-1} In , \mathcal{L}^{-1} \mathcal{N}^{-1} is a polynomial of order \mathcal{Q}^{-1} The equily keynel $K(X,X) = (1 + \sqrt{1}X)^{\mathbf{Q}} = (1 + \sqrt{1}X)^{\mathbf{Q}}$	`+×.vî. ⊾ `+×izû) [©]	· ·	• •	• •	•			• •		• •		
We can adjust coare and M(xx) = (1 + x) = (1 + x) + then	be very usly for d=10	9, Q= 100	K	• •	•	• •	•		•		0 1	
At lette the without anowing what I is. Nor	nel n action:	1	J. S.	· · ·							0 1	
Let $\mathcal{M}(x, x)$ be the inner product in some space Ξ		J		• •	•			• •				
E_{\times} : $\mathcal{H}(\times,\times) = e_{\times} p(-\gamma _{\times} - \times _{0}^{2})$ The corresponding \mathbb{Z} of this werel is		. <u></u>			•	• •	•		•			
Infinite dimensional.		H	ow ce	n.we	unou	, ane	nav	reme	l cond	lbðe)	
infinite dimentional space! (Topla some sec	श्र्) र	· 14	IT's re	-via a si	he > (xists Constr	uction	+ -	When white new	um ³ read.		
Tanc or coorde: W(x,x)= e			ναφεια			Math	6.06	of the	Kerne	e (N	erceis condition	.s)
How do we use H?					•6	Jho a	xes? notimes	l never igeu suiscu	nsitt. nd zd			7
Instead of cossing yiyorizy to the	· · · · ·			• •				• •		• •		
quadratic programming, we case $y_i y_b N(x_i, x_b)$		• •	• •	• •	•		•		•			
From ss a (x) = son (ultral) - 1		-	-			-		-				
	rols · · · ·							• •		• •		-
$W = \sum \alpha_{n} y_{n} z_{n} \rightarrow g(x) = \operatorname{sign} \left(\int w_{-1} w(x_{n}) + L \right)$	nols i i i i Gn	· ·	• •	· ·	•	• •	0	• •	•	• •	•	•
$W = \sum_{Z_n := sv} \alpha_n y_n Z_n \rightarrow g(x) = sign\left(\sum_{\alpha_n y_n} \alpha_n y_n K(x_n; x) + b z_n := sv + b z_n := sv$	nets i i i i i i i no i i i i i i i i i i no i i i i i i i i i i i i i i i i i i i	· ·	· ·	· ·	•	· ·	•	· ·	•	· ·	• •	•

Design your own vernel (X(X,X)) is a volid vernel () It is symmetric ~ (X(X,X)) ···· K(X,X)) is positive Cest les conditions de Mercer. Soft Margin SVM Data con be SUGHTLY non separable to inseparable - sol soft morgin - sol vernel. Margin Violation : A point muy violate the may is the ashion ... Quantify: $y_n(wTxn+6) \neq 1-g_n$, $\xi_n \neq 0$ Total vialation: $\sum_{n=1}^{N} g_n$ The new optimization: Smin wTw + CZ = g_n St $y_n(wTxn+6) \neq 1-g_n$ $\xi_n \neq 0$ New multiplies for precenters z: We go to the hagrandian again ... $\mathcal{L}(W_1 \leftarrow g_1 \alpha_1) = \frac{1}{2} W^T W + C \sum_{n=1}^{\infty} \xi_n - \sum_{n=1}^{\infty} \alpha_n (y_n (W^T \times n + b) - 1 + \xi_n) - \sum_{n=1}^{n} B_n \xi_n$ V.L = W - Žornyn Zn= O the = - Zonyn=0 $\frac{\partial \mathcal{L}}{\partial \xi_{n}} = C - \alpha_{n}^{H^{2}} - \beta_{h} = 0$ $\alpha_{n} \leq C$ $\sum \max \lambda(\alpha) = \sum \alpha_n - \frac{1}{2} \sum \sum y_n y_n \max \alpha_n \alpha_n x_n x_n$ So the selition is Osans C, Zango=0 \rightarrow w= $\sum d_{i} d_{j} n \chi_{n}$ which minimises: $\frac{1}{2} w^{T} w + C \sum \xi_{n}$ C is defined using cross-validation Types of support vectors • more in support vectors (0 < 0/2 CC) Lo yn (wT Rn+6) = 1 (Gn=0) Two technical descriptions La 1- What If data non-livedy see? • non-margin support vectors (an=c) $\rightarrow 2 - \overline{Z}$: what about the bias (w,)? All gass to 1 and $W_0 \rightarrow 0$ Yn (WTXn+6) <1 (En70)

Radial Basis Functions (RBF) Each (Xn, yn) eD influences h(x) based on Ux-Xn11. 4 closer - + influence. Standard form: $h(x) = \sum_{n=1}^{N} w_n e^{-Y \|x - x_n\|^2}$ The Learning Algorithm. We wont $E_n = 0$, $h(x_n) = y_n$ $- \sum_{m=1}^{N} w_n e^{Y ||x_n - x_m||^2} = y_n$ exp(-yilx) (Finding Wi). * I have N datapoints, I'm trying to born N params exep(-Y IIXir Xill?) LoN eq., Nummer! · If 更 is in -> W= 更了 (perpect interpolation) Effect of V · Often RBF is used for classification. wrull Y $h(x) = sgn\left(\sum_{n=1}^{N} \omega_n e^{-\gamma \|x_n \cdot x\|^2}\right)$ $\begin{array}{c} & min (s - y)^{2} on \end{array} (y + \pm 1) \\ & h(x) = sign(s) \end{array}$ RBF with K centers RBF~KNN N parameters, Wo, -, WN based in N data points. · Instead of using a gaussian, Sol: Use K << N centers: Mar-, Mr. instead of X2-, XW for the busis function. Lets use a portion that is line a cylinder. (N=1) $h(x) = \sum \omega_{k} \operatorname{op}(Y || x - M_{k} ||^{2})$ The bigger U, the months should be the besit fortion in distance between each in and its classific contraid Min. 1- How can I choose MR? -2- How can I choose the wayh?? Lo C'est Kimeons clustering Zune Hurman Selit $x_{1,-}, x_{m}$ into $S_{\underline{1}}, S_{\underline{1}}$. Example of unupervised larring 💭 • NP-hand problem 💮 5.5_WX+7.41.1° Find the minimum is Nobod. we need an algorithm to get a deart set Lloyd's Algorithm: Heratively minimise: Exp(-YIX-M113) ... exp(-YIX-M11) exe(VIIXA-Mull?)) Ww $\sum_{k=1}^{n} \sum_{x,x\in S_{n}} \|x_{n}-f_{kk}\|^{2} w_{t}^{2} f_{kk} s_{k}$ If 更更 Inv → W= (東京) あち $M_{\rm H} \leftarrow \frac{1}{15_{\rm H}} \sum_{X_{\rm H}} X_{\rm H}$ We converge to a local minimum, which depends on the initial distoring. Suc { {Xn/ 11Xn Mull 5 all 11Xn-Mell }

RBF Network -711×-1412 Features: C Nonlinear transporm depends on) RBF Network Neural Networn Choosing V RBF & Regularization RBF on rederived purely pour regularization $h(x) = \sum_{k=1}^{\infty} \omega_{k} e^{\frac{\gamma}{1} ||x - M_{k}||^{2}}$ p Expectation maximisation $\sum_{n=1}^{\infty} (h(x_n) - y_n)^2 + k \sum_{n=1}^{\infty} a_n \int_{-\infty}^{\infty} (\frac{dn}{dx_n}) dx$ Horathe approach (~EM algoritm in mixture of Gaussians) This is the smathest interpolation. Which solution is ABF agon. 1 - Fix V, solve for W 2 - Fix W, minimize error wit V Obs: We can have a different Vu for each Mr. SVM nemel implements: Sign (Zango e Mixxan + 6) RBF implements $\operatorname{Sign}\left(\sum_{k=1}^{k}\omega_{k}e^{-\gamma_{k}}+b\right)$ Occom's razor Sompling bies Ihree Le nay Trinciples - Data snooping > An explanation of the data should be as simple as possible, but no simpler (A. Einstein) Lamosarov > The razor of occam: The simplest model that fits all the data is also the most plausible. while a passive J Measures of Complexity of h MDL (minimum desc length) complexity of h MDL (minimum desc length) Order of a polynomial. Le What is smple? - Why simple - better? Simpler - better Eaut performance of Complexity of H Entropy Tencer single hypother complex ones one loss linely to fit the data: $\frac{M_{21}(u)}{2^N}$ So when it happens its more significent. VC-dimension When we think of simple, · Sampling bias: If the data is sampled in a biased way, learning will produce a similarly biased aticome. it's in terms of K. Proof use simple in terms of H... If you have a population that was not used in training, we have a sampling bia of they appear on testing. They are related to the principle of counting: · Data snooping - If the data has appetted any step in the lering process, its alivity to asses the auticane has been COMPROMISED X bits specify h→h is one of 2 eRements of H * Most common trap -many ways to slip. Exception: SVM; looks complex but is one of ferv.

1.5: Example Ario 1.1 Pro Pro Vormalize from the part where of Person Picos Examples of Snooping 1. - Looning at the Istaset Z= (1,x1,x2,x1,x2,x1,x2). Why not 2:(1,x1,x2)? The data filing and (solt a circle) Note: you can take into accamt Info you have af & (sym in -2.2 for on), while you not bear at P. Wrong order! You give the mean and var of the test set to the adgo 2. - Trying one model after the other ON THE SAME DATASET, you will centually succed. Avoid data snooping > IF you torture the data long enough, It will angess. • VC dimension of the total learning model. • May include what others tried! 11 This paper suys that SMM with 7= 1/2 is perfect! Patasnooping The problem is matching for a particular dataset Account for data snooping. Dayesian Learning livelihood prior We extend protobility to calculate P(D1h=g) $\overrightarrow{P(h=s|D)} = \frac{P(D|h=s)P(h=s)}{P(D)}$ P(D|h=y)P(h=y)posterior The prior is valid · Key: The prior is an assumption that can be wrong Bayesian learning is justified when trungs all other methods Knowing the prior we can find the most probable h given the data. Can we really calculate P(n=g)? The prior is irrelevant L. TT_O ... TT₁₀₀₀₀₀ (doesn't mutter To that much) h (2) Lectring Alg Aggregation Combining mony molels har-, ht that were tracked on D. Tactics of Take an average. (Reg.) Take a vote. (Classif.) > ensemble learning Aggregation on be done 1_After the pact - combines existing solutions 2-Before the fact - creates solutions to be combined Boosting: create hi, -, in, which are (AdaBoost) decorrelated with the previous h that were exceed at each step We core about missclassifications in J Each model is weighted: $g(x) = \sum_{x \in h_t(x)} x$ We choose α_{ts} to minimize the error on the organizated debet