Caltech's Machine | hearning |
| :---: |
| CS156 | CS156

The biggest pitfall in theory is that the assumptions that re taken oredvorced from the reality of how we use machine lecining in pradice

Machine Learning

Theory
*VC most Important stuff (Bounds that works well in practice)
\times Bias \sim Variance theory
(Learning curves...)
*Computational Complexity $O\left(n^{2}\right)$
4. Too away from practice ".

* Bayesian

\varnothing A diminute improvement in a machine learning problem con lead to massive pollen.
- A problem con be taught as a machine learning

$$
\begin{aligned}
& \text { proven IFF } \longrightarrow \text { Weave a pattern* } \\
& \rightarrow \text { Weave a pattern } \quad \rightarrow \text { We'ver't data (A MUSTT) }
\end{aligned}
$$

example:
maisie recommendation recommend (viewer, maisie) \rightarrow rating
reverse reverse ergeneering mowing the maid \& the rating.

* How do we know? We dort unaw! But ie con try to caply methods and we con determine If were leaning ar not.
In fact we will use machine loaning to see If there's a patten.

The Learning Problem.
Components of Learning
IIA bank e has no magical orb to now If a persan is credit worthy ar not.

- Input x (customer data)
- atput: y (good/bad customer)
- Target function $f: \chi \rightarrow y$ (ideal credit approval formula)
- Data : $\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)\right\}$
- Hypothesis: $g: x \rightarrow y$ (we noe approximate \& well). (formula to be used)
Solution components
Two solution components of the learning
problem: The Hypothesis set $H=\{h\}$
problem: The Hypothesis set $H=\{[h\}, g \in 77$
2-The learning algorithm.

2. The learning algorithm.

Together, thy're THE LEARNING MODEL.
Example: The Perception
Aerate codit if $\sum_{i=1}^{d} \omega_{i} x_{i}>$ threshold Γ Ald off orel
he tl conte written as: $\quad \Gamma^{\text {revanc: } \omega_{0} \quad\left(\omega_{0},-, \omega_{d}\right)}$

$$
h(x)=\operatorname{sign}\left(\left(\sum_{\left(\omega_{i} x_{i}\right.}^{d}-\text { threshold }\right) \quad h(x)=\operatorname{sign}\left(w^{\top} x\right)\right.
$$

Perceetran \rightarrow Pick a misclassified point: Learning All.

$$
\operatorname{Sign}\left(\omega^{\top} x_{n}\right) \neq y_{n} \rightarrow \underset{\begin{array}{c}
\text { Update } \\
\text { weight vo }
\end{array}}{\substack{\text { miser }}}
$$

$w \leftarrow w+y_{n} x_{n} \rightarrow$ Run until no more are misclassified.
(Hill end) If data is inerasable.

How do we know If th is linearly sepeciable?
$1 \rightarrow$ Assume is rot. We con transform data to be lineary separable. (At what cost?)
The rate of conergence of the perception learning algorithm is in fact terrible. There ore patological puitlorns where $\$$ doesnt converge.

Statistics \rightarrow We mace assumptions, we heme a math model.
Machineleorning \rightarrow Least assempetins (general as passive).

Optimization: Tad at deposal for machine bering.

Basic Premise of Learning
"use a set of observations to undercover an underlying process"

- How much is enagh data?
$L \rightarrow$ In readiceci In no the you cation. Well se in theory
more about that.
-The bottle need of machine laming is is capacity of generalizing.
Is Learningteaside?
- Probabilistic approach:

We ign red ballots from a blue red ballot.
$P($ pick red boles $)=M$
If we do N indef exp and get a prop of ν red ballots, $M \approx \nu$? No and yes!

In fact,

So $M=V$ is $P A C$.
(Probable approximately correct.)

- The probability is bounded regardian of M.

$$
V \approx M \rightarrow M \approx V
$$

- Supervised Learning \rightarrow The anent data is
wee (ineuticorrect wife) explicitly given. $E x:\left\{\left(x_{1}, y_{1}\right),-1\left(x_{n}, y_{n}\right)\right\}$
- Unsupervised Learning
wive (input,?) $\underset{\substack{\text { una wings the nance withat } \\ \text { Enc }}}{\text { Closes. }}$ Example: Clustering.
// A way of gating a high beet representation (han patters) of the in est
- Reinforcement Lemming
were (inept, partial anent, grade pro the abet)
Reword for treateot.
ε_{x} : game simulates.

Learning: Ununoun function. g: $x-y$
Each bleat is a point $x c x$, red right hyyeonesss $h(x)=f(x)$

Using Ho eftling inequality

$$
\mathbb{P}\left[\left|E_{i n}(h)-E_{\text {ait }}(h)\right|>\varepsilon\right] \leq 2 e^{-2 c^{2} N}
$$

BUT, Hoeffoling's doesn't acely to mulliek bins! Fortunately wo con tame the wast case. Ald with that we get jest a M factor which becomes meaningless.

Linear reg - rale he of ot.
 based indent's features.
 To minimize the error $\left.E_{n}(\omega)=\hbar \|(X) w y\right)^{2}$

Th wo

The lines regesion dy ${ }^{\prime}$ "yt competing $\omega=x^{+} y$
Linear reg ar dasssfication:

$\operatorname{Sigh}\left(\omega^{\top} x\right)$

Merging $P(x) P(y \mid x)$ as $P(x, y)$ mess two concepts

Error Measures
$E(h, f)$ /error function
 $=\llbracket[(x) \neq f(x) \mathbb{\rrbracket}$ Binargerox
Insemele error: $E_{\text {in }}(n)=\frac{1}{N} \sum e\left(h\left(x_{n}\right), f\left(x_{n}\right)\right)$
Outsample error $E_{\text {out }}(h)=\mathbb{E}_{x}[e(h(x), f(x))]$

If we don know what to do, use PRANIBLE measures or FREna y miscues

Noisy Targets
// Target function is not a function $f\left(x_{1}\right)=0, f\left(x_{2}\right)=2$, where $x_{1}=x_{2}$. Sol: use "target distribution" $\mathbb{P}(y \mid x)$
(x, y) is now def. by a joint distribution.
Noisy target: $f^{\text {petal. }}(x)+\varepsilon \Rightarrow f(x)=\mathbb{E}(y \mid x)$

We need a metric to mauve the sophistication of the model $\rightarrow d_{v c}$

model complexity $++\rightarrow E_{\text {int+ }}$ but $E_{\text {ort }-E_{\text {in }}++}$

En is kinda a proxy to Bout.
$E_{\text {out }}(g) \approx 0$ is achieved through:

$$
\begin{gathered}
\uparrow E_{\text {ot }}(g) \approx E_{\text {in }}(g) \\
E_{\text {in }}(g) \approx 0
\end{gathered}
$$

Learning is reduced to two questions

\rightarrow Con we mane E in (g) shed exon?

Obs Sometimes its impouible to have Eat $(g) \approx 0 . \varepsilon_{i}:$ stare meat Having on error of 45% wall/ mme ip nix h dray.
Training

$$
\mathbb{P}\left[\mid E_{\text {in }}\left[E_{\text {out }} \mid>\varepsilon\right] \leq 2 M \exp \left(-2 \varepsilon^{2} N\right)\right.
$$

\checkmark Object Ne: Find a bettor bound than M
M come from
Bad events: $P\left[B_{1}\right.$ or $\left.\ldots B_{m}\right] \leq \underbrace{P\left[B_{1}\right] \ldots P\left[B_{m}\right]}_{\text {no overlap: } M}$

In practice, Bad Events overlaps!

If there es data here, the E in changes. If h 's ore almost the some, there is dmastro change in' $\Delta E, n$!
\rightarrow From this constellation of points, how many patterns of red \& Wee can I get?

Li Number of dichotomies
$h: x \rightarrow\{ \pm 1\} / /$ hypothesis
$h:\left\{x_{1},-x_{N}\right\} \rightarrow\{ \pm 1\} / /$ dichotomy
The number of hypothesis $|t| \mid$ can be
Infante, but the number of dichotavici sat most 2^{N}
The growth function
>1 give you a bulg N, base where to place N pants the dicutanione maxed.
The grow th function counts the most dichotomies as ing N paints

$$
m_{H-1}^{m}(N)=\max _{x_{1,1}, x_{N} \in x} \mid \underbrace{\mathcal{H}\left(x_{1}-, x_{N}\right) \mid}_{\text {set of dichotomies. }}
$$

It satisfies:

$$
m_{-1}(N) \leq 2^{N}
$$

Apply $m_{H}(N)$ to perceptions

We have 2^{3} ways to seecrabat it with a line.

$$
m_{r}(3)=2^{3}
$$

$N=3$
And for $m_{H 1}(4)$?

lustration of the growth function:

Example
(Positive Rays) $\quad \begin{aligned} & h(1): h: \mathbb{R}[\{1+1\} \\ & h(x)=\operatorname{sgn}(x-a)\end{aligned} \quad M_{H-1}(N)=N+1$
(Positive liernals)

$$
m_{1-}(N)=\binom{N+1}{2}+1
$$

$/ /$ wars of a ass.g.gin $N+1$ eat iwo

$$
h: \mathbb{R}^{2}-\{+1\}
$$ sepeorate str.

(Comer sets) $h(x)=+1$ is convex:
$\mathcal{T} \bigcup_{\text {Notenver }}^{C o m e x}$ $h(x)=0$ not convex.

Sol: put the N pants in a circle, we get
2^{N} dichotomies (max bound!) $\quad m_{T 1}(N)=2^{N}$.
\angle When this happens: we say 77 shat ers the pits
$\mathbb{P}\left[\left|E_{\text {in }}-E_{\text {art }}\right|>\epsilon\right] \leq 2 M e^{-2 \epsilon^{2} N}$

- Let's replace $M_{\text {with }} M_{H}(N)$. - If $m_{7 P}(N)$ has polynomial adder. Live war. Just erring that $M_{H}(N)$ is pelmomial is enough to pavo that learning's possible.
Le main point

$$
\nexists \text { break point } \rightarrow M_{H}(N)=2^{N}
$$

$$
\exists \text { break point } \rightarrow m_{H}(N) \in P(N)
$$

We wort to band $m_{H}(N)$
tactic: $m_{H}(N) \leq$ apadromial.
 CBIN aDorned from this.
$>M_{H}(N)$ is a polynomial
The VC dimension
 "the most points it con shatter"

Ex: Positive rays $d_{x}=1$
$2 D$ perceefrons: $d v=3$
Convex stats: duct $^{2}=\infty$
VC dimension and Learning
$d_{V C}(H)<\infty \rightarrow g \in \mathcal{H}$ will generalize.
$>$ This is independently from the Lemming alg ε Ines distribution $\&$ target function.
>You will generalize with high potability writ the not date:

$$
\begin{aligned}
& N \leq d_{\mathrm{vc}}(71) \rightarrow H \text { con shatter } N \text { peon. }
\end{aligned}
$$

Example: For d-dim perceetrans $d_{v c}=d+1$
$d+1$ is calso the number of perameters in the perceptron:

Interpreting the VC dimension.
\#of pirmsin midel \sim deyrees of fodan

Obs. Psementes may ot antratote dorees of freelom.

$$
x \rightarrow(5) \sim \rightarrow \rightarrow \infty \rightarrow y
$$

Here there are ∞ permen, but 1 dgree af feedon. $\rightarrow d_{V C}$ meassures the EFFECTVE number of ecrameters.

Lets find $\omega / \operatorname{sgn}\left(x_{\mu}\right)=y$. We condo $x_{w}=y$. Beave $x_{m, n} w=x^{-1} y$!
Thus, we con shatter thesed $d+1$ enins $\longrightarrow d v \geqslant d+1$
For $d+2$, more points then $d_{\text {im }} \rightarrow x_{2}=\sum a_{i} x_{i}\left(L: n\right.$. dee), not all the $a_{i}=0$.
The non-zero a_{i} get $y_{i}=\operatorname{sign}\left(a_{i}\right)$ and x_{γ} gets $y_{\gamma}=-1$. No percecton con imptemet

$$
\begin{aligned}
& \text { So } w^{1} x_{d}=\sum a^{w} w_{i} \gg 0-y_{\gamma}=\operatorname{sigh}\left(w^{T} x_{0}\right)=+1
\end{aligned}
$$

2. How many data points we need
$V C_{\text {ineq. }} \mathbb{P}\left[E_{\text {in }}(g)-E_{\text {ot }}(g) \mid>\epsilon\right] \leq \underbrace{4 m_{H}(2 N)^{-\frac{1}{8} N}}_{\delta}$
smelefician
of
If
we want certain ϵ and δ, haw does N deeend an dve?

$$
\mathbb{P}\left[\left|E_{\text {oot }}-E_{\text {in }}\right|>\epsilon\right] \leq 4 \overbrace{m_{H}(2 N) e^{-\frac{1}{\varepsilon^{2} \epsilon^{N}}}}^{S}
$$

Get $\epsilon(\mathrm{s}) \quad \epsilon=\sqrt{\frac{\sin }{\mathrm{N}} \ln \left(\frac{4 m(t)}{\delta}\right.}=\Omega$

Rescale:

\rightarrow Bager VC dimension \rightarrow Need fa mant smples $d_{V C} \propto \begin{gathered}\text { number of sumpes neded } \\ \text { to dain a cetain eacaumin }\end{gathered}$

To dtain a cetain examence.
Rule of thomb:

$$
\begin{aligned}
& N \geqslant 10 d_{v c} \rightarrow N \alpha d_{v c} \\
& 6 \text { Nuntrer of smples } \\
& \text { tod } d_{x}
\end{aligned}
$$

Bias Variance Tradeoff
Approximation - Generalization trodeoff.
Small $E_{\text {out: goad approx of } f \text { at of sample }}$
Mare complex $H \rightarrow$ Better chance of aperoxinnating f
Less complex $H \rightarrow$ Better chance a genererlizing at of single
$\mathcal{L} \in H$ never happens...
The bias variance is a new approach
VC analysis: E out $\leq E_{\text {in }}+\Omega$
Biasvarionce: Decompose Eat into \sim How well It aperaxinto q

$$
E_{\text {out }}\left(g^{(0)}\right)=\mathbb{E}_{x}\left[\left(g^{(0)}(x)-f(x)\right)^{2}\right]
$$

1 want to get rid of (0), my dataset.

$$
\begin{aligned}
\mathbb{E}_{D}\left[\mathbb{E}_{\text {out }}\left(g^{(D)}\right)\right] & =\mathbb{E}_{D}\left[\mathbb{E}_{x}\left[\left(g^{(1)}(x)-f(x)\right)^{2}\right]\right] \\
& =\mathbb{E}_{x}[\underbrace{\mathbb{E}_{D}\left[\left(g^{(1)}(x)-f(x)\right)^{2}\right]}]
\end{aligned}
$$

Lets define $\bar{g}(x):=\underset{D}{\mathbb{E}}\left[g^{(0)}(x)\right] \rightarrow \underset{D}{\mathbb{E}}\left[\left(g^{(1)}(x)-\bar{g}(x)+\bar{g}(x)-g(x)\right)^{2}\right]=\underset{D}{\mathbb{E}}\left[\left(g^{(0)}(x)-\bar{g}(x)\right)^{2}+(\bar{g}(x)-f(x))^{2}+2(g(x)-\bar{g}(x))(\bar{g}(x)-g(x))\right]$

Example: $f[-1,1] \rightarrow \mathbb{R}, f(x)=\sin (\pi x)$
Our training dataset: $N=2$ (LI!)
Hyp. set: $H_{0}: h(x)=6$

$$
\begin{aligned}
& H_{0}: h(x)=6 \\
& H_{1}: h(x)=a x+b \quad \text { who is better? }
\end{aligned}
$$

Learning Curves
VC Analysis / Bias Vorience
Dataset D of size N. How does $E_{\text {in }}$ and Eat viry with N?

Non-lineor Transformations

$$
z=\bar{F}(x)
$$

$$
e x: z=\left(1, x_{1}, x_{1}, x_{1}, x_{1}, x_{1}^{2}, x_{2}^{2}\right)=\left(2_{0},-,-z_{\tilde{\alpha}}\right)
$$

Obs: Fince hye on x.
$\zeta_{d v c} \leq \tilde{d}+1$
Logistic Regression

Logisic function θ : $\theta(s)=\frac{e^{s}}{1+e^{e}} \quad 1$ sof thechole. Looving at the data PEFORE choosng the model can be hazecdas to yor Ear Yo yout "snooped" a the darta.
4. The datoset with the dir gientes is the one yo had begre? data smooping

$h(x)=\theta(s)$ is interereted as a erobability.

WWe p.at this becour
is great fre petmaction
 4 models wrectanty
Thisis olso alled signnoid Examele: (x, y), y is nosy

$$
\mathbb{P}(y \mid x)=\left\{\begin{array}{l}
f(x), f x y=1 \\
1-g(x), f x y=-1
\end{array}\right.
$$

M_{y} targt is $f: n^{4} \rightarrow\{0,1\}$ ecrabi: $1, T_{1}$
Lern $g(x)=\theta(\underbrace{\left.()^{\top}\right)}_{\substack{v^{\top} x \\ \text { Hatotain undts }}}$
Hactotain megts.
How we build os erer measure ithic catyl? - Plavible arrar masere basel on luelifood.
(We max the lof limelihad instad

Neural Networks
biological function \sim biological struture
Kay: combining perceptrons

A muttilajered perceetron implementing this

$$
\omega_{i \gamma}^{(l)}\left\{\begin{array}{l}
\ell, 1 \leq l \leq L \text { layers } \\
i, 0 \leq i \leq d^{\left(d^{(s)}\right.} \text { heots / Weodueys bee } x_{0} \text { coutat!! } \\
\gamma, 1 \leq \gamma \leq d^{(l)} \text { outeots }
\end{array}\right.
$$

$$
x_{\gamma}^{(\ell)}=\theta\left(s_{\gamma}^{(l)}\right)=\theta\left(\sum_{i=0}^{d^{(l-1)}} \omega_{i \gamma}^{(l)} x_{i}^{(e-1)}\right)
$$

Apely x to $x_{1}^{(0)} \ldots x_{\alpha^{(1)}}^{(0)} \rightarrow x_{1}^{(1)}=h(x)$
Algo: Bacupropagation.
1-Init weights wiz (e) Ranoomily.
2 . for $t=0,1,2 \ldots$ do
pickne $\{1, \mathrm{~N}\}$
Forwurd: compoute Au $x_{d}{ }^{(1)}$
Bacumid: comeote AL $\delta_{g}^{\text {(c) }}$

return $\omega_{i z}^{(2)}$

SGD
$E_{i n}(\omega)=\frac{1}{N} \sum \ln \left(1+e^{-y n \omega^{\top} x_{n}}\right) / / \log i s t i c$ regression
We picu a small abiset (batchsize) of the lata aset and do gradient desent. IITheorg: $\mathbb{E}_{n}\left(\nabla_{g}\left(x_{n}, y_{n}\right)\right)=E_{i n}$!
Advantages of SGD $\underset{\sim}{1}$ lsc order of cone.
Zrand omization (mans tow csace of silly lacel minina)
Rule of thumb: $\eta=0.1$ is on (learing rate)
SGD@NN
Error ar sample: $e\left(h\left(x_{n}\right), g_{n}\right)=e(w)$
We ned the gradent:

$$
\nabla e(w): \frac{\partial e(w)}{\partial w_{i j}^{(e)}}
$$

We can eviabuate $\frac{\partial e(w) \text { analyticully }}{\partial w_{i j}(\ell)}$
or numericully or numericully. $\partial w_{i}{ }^{(l)}$

$$
\rightarrow \frac{\partial e(w)}{\partial w_{i \gamma}^{(0)}}=\frac{\partial e(w)^{(2)}}{\partial s_{\gamma}^{(2)}} \times \frac{\partial S_{\gamma}^{(0)}}{\partial w_{i \gamma}^{(e)}}
$$

What we need. $x_{i}^{(e-1)}=\frac{\partial s_{x}^{(l)}}{\partial w_{i}^{(c)}}=$

$$
L \delta_{\gamma}^{(e)}=\frac{\partial e(w)}{\partial s_{\gamma}^{(1)}}
$$

δ for the final layer

$$
\begin{aligned}
& \delta_{1}^{(L)}=\frac{\partial e(w)}{\partial S_{1}^{(L)}} \\
& e(w)=e(\underbrace{h\left(x_{n}\right)}_{x_{1}^{(L)}}, y_{n}) \\
& \text { 'The value }^{n}
\end{aligned}
$$

$$
Q_{j_{s i t}^{(1-2)}}
$$

$$
\begin{aligned}
& e(w)=e(\underbrace{n\left(x_{n}\right)}_{\substack{x_{1}^{(L)} \\
\text { CThe value } \\
\text { of the otpot! }}}, y_{n}) \\
& x_{1}^{(1)}=\theta\left(s_{1}^{(1)}\right)
\end{aligned}
$$

$$
\rightarrow \theta^{\prime}(s)=1-\theta^{2}(s) \text { for tari. }
$$

$\rightarrow \theta^{\prime}(s)=1-\theta^{2}(s)$ for tanh.

Overfitting
Overfitting \neq Bod generalization
L Ya tried too had
Def: Overffiting: fitting the data more than is warranted
\rightarrow Culprit: filing the noise (harmful)

$>$ With enough N, the $7 M_{10}$ model is a better fit. But before, we had smaller error out of simple wish H_{2}.

number of data points $N \uparrow$: Overfitting \downarrow stochastic noise $\uparrow: \quad$ Oerfifing \uparrow

 deterministic noise \uparrow : aurfitting \uparrow
\rightarrow Deterministic noise: the part 8 H cannot capture.

- Hedepends on H and is fixed for a given x. af nose...

Bides variance decomposition with noise:

Fitting the noise is line filing to a pattern

$$
\underbrace{\mathbb{E}_{D x}\left[\left(g^{(0)}(x)-\bar{g}(x)\right)^{2}\right]}_{\text {var }}+\underbrace{\left.\mathbb{E}_{x}[\bar{g}(x)-f(x))^{2}\right]}_{\text {bias }}+\underbrace{\mathbb{E}_{\epsilon, x}\left[(\epsilon(x))^{2}\right]}_{\sigma^{2}}
$$ that doesnt exit.

The deterministic nose cones from the limitations of ar hypothesis set H.

Regularization

Instead of having wild lines, we wart mild lines. We greatly reduce the variance
at the cost of middy increasing at the coth of mild increasing the bias.

Def: Let L_{n} the k th Legendre polynomial of oder x.
They are orthogonal to each other.
$L_{1}=x, L_{2}=\frac{1}{2}\left(3 x^{2}-1\right), L_{3}=\left(5 x^{3}-3 x\right)$

$$
Z=\left[\begin{array}{c}
1 \\
\vdots \\
L_{Q}(x)
\end{array}\right] \quad H_{Q}=\left\{\begin{array}{c}
Q \\
> \\
> \\
\text { Legendre polynomials } \\
\text { fa on hypothesis set. }
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Given }\left(x_{1}, y_{y}\right), \ldots\left(x_{n}, y_{n}\right)-\left(z_{1}, y_{n}\right), \ldots\left(z_{n}, y_{n}\right) \\
& \text { Minimize } E_{i n}(w)=\frac{1}{N} \sum_{n=1}^{\sim}\left(w^{\top} z_{n}-y_{n}\right)^{2}=\frac{1}{N}(Z w-y)^{\top}(Z w-y) \\
& \rightarrow W_{1 m}=\left(Z^{\top} Z\right)^{-1} Z^{\top} y / / G G .
\end{aligned}
$$

However, If we constrain the weights: Cos: H_{2} is a constrained version of Fl_{0} // Hard constraint: $W_{q}=0 \forall q>2$. a softer constraint $\sum_{q=0}^{Q} \omega_{q}^{2} \leq C \leftrightarrow \min _{\text {st }}^{\frac{1}{\hbar}} \frac{(2 w-y)^{\top}(2 w-y)}{w^{\top} w}$
We call this sol 1 wee

- This is easy soldode using $K K T$ multipliers.
$>$ Minimizing Eaug(w) unconditionally is equiv to $\left\{\begin{array}{l}\min _{\text {in }} \\ \text { st } \\ \mathrm{E}_{\mathrm{in}}(w)\end{array}\right.$
The final solution is $Z^{\top}(Z w-y)+\lambda w=0$
$\leftrightarrow w_{\text {reg }}=\left(Z^{\top} Z+\langle I)^{-1} Z^{\top} y / / \omega\right.$ th reg. $w_{\text {lin }}=\left(Z^{\top} z\right)^{-1} Z^{\top} y$ II wilhat trey. One shot learning with

overfit \longrightarrow
 regularization!

This reghlazer is called WEIGHT DEa CM.

$$
\begin{aligned}
\text { Gradient descent } w(t+1) & =w(t)-\eta \nabla / E_{\text {in }}(w(t))-2 \eta \frac{\hat{K}}{N} w(t) \\
& =w(t)\left(1-2 \eta \frac{\hat{N}}{N}\right)-\eta \nabla E_{\text {in }}(w(t))
\end{aligned}
$$

Variations of weight decay: $\rightarrow 1-\varepsilon_{\text {mphas size certain weights: }}^{Q} \gamma_{q} \omega_{q}^{2}$
$L_{\text {Examples: }} V_{q}=2^{q} / / /$ anode \dagger t. $v_{q}=2^{-4} /$ h.ghader $\mathrm{f} T$
2. We ploy the inverse: Weight growth!
$>\ln$ Neral Networks: $\eta_{\text {fffent }} V_{\text {sta each layer. }}$

Terrible Idea.
Best $\mathrm{K}=0$.
Rule of thumb: stanastc noise is "high frequency" \Rightarrow constrain ss learning smother
In general smaller weights
$>$ we want to penalize the noise, not the signal. towards imo

General form of Augmented Error
Cell reg $\Omega(h)=\Omega$, we mamie $\quad E_{\text {ag y }}(h)=E_{\text {En }}(h)+\frac{S}{V} \Omega(h)$
Eout is 6 tet tor than $E_{\text {in }}$ as a \quad (ll
proxy for Eat. $E_{\text {art }}(h) \leqslant E_{-(h)}+\Omega(t)$

Choosing A Reglarizer
$>$ We mare to smoother patties because te min 's not smooth:
$>$ If Ω is bad, we hare \langle to chan If we tare i wing
Neural Network regularizes
Weight decay: toll verity re small we end p

with a linear function con plaged
(g liner gig linear $\rightarrow \mathrm{g} \cdot \mathrm{g}$ linear). As weights
increase we get fl by bal function
Weight elimination: fewer weights \rightarrow smaller VC dimension

$$
\text { Soft weight elimination: } \Omega(w)=\sum_{i, \delta} \frac{\left(w_{i}^{\prime \prime \prime}\right)^{2}}{\beta^{2}+\left(w_{i \gamma}^{\prime i}\right)^{2}}
$$

//Be weighs re left done, small weights ae pushed towed zero.
Early -stopping as a Regulorizor
$>$ Regularization through the optimizer!
$>$ when to stop?

The optimal α

STOCHASTIC NOISE
>Deterministic rove tehaes close catty
ax if H were stacc haptic noise.

On at of sample point (x, y) the error is $e(h(x), y)$

Is K is too big you ore going a reliable estimate of the error for a very poor model.

$$
D \rightarrow g, D_{\tan } \overrightarrow{2} g^{-}
$$

Rule of thumb: $K=\frac{N}{5}$

Validation \neq Regularaation

$$
E_{\text {at }}(h)=E_{\text {in }}(h)+\text { overate }{ }^{t} \text {-penalty }
$$

validation estimates this reg. estimates this \uparrow $E_{\text {art }}(h)=E_{\text {in }}(h)+$ overfit_penalty

Problem: K is not green. Each part in validation is a point less for thing.
K points validation // Due $N-K$ points training $/ 1)_{\text {tain }}$
$>$ Dial is used to mauve learning chases
If an estimate of Eat affects leann in:
The set is no longer a TEST set.
It becomes a VALIDATON set!

- Test set is unbiased validation set has optimistic bias.
- Example: Two hyp $h_{1}, h_{2} / E_{\text {ar }}\left(h_{1}\right)=E_{\text {ait }}\left(h_{2}\right)=1 / 2$

Pick $h \in\left\{h_{1}, h_{2}\right\} / e=\min \left(e_{1}, e_{2}\right)$ $\mathbb{E}(e)<1 / 2$ (optimistic bias)

Using Dive many times

We selected the model H_{m} - using Dual Evae $\left(\bar{g}_{m^{*}}\right)$ is a biased estimate of Eat $\left(\bar{g}_{m^{*}}\right)$

Models $H_{1},-, H_{M}$ Use Duran to leer ga from each model.
$E_{m}=E_{\text {val }}\left(g_{m}\right)$
we pice $m=m$ with the smdlest E_{m}.
Due is used for "training" on the finalists model

$$
\begin{gathered}
H_{\text {val }}=\left\{\bar{g}_{1},-, \bar{g}_{M}\right\} \\
E_{\text {out }}\left(\bar{g}_{m}\right) \leq E_{\text {val }}\left(\bar{g}_{m^{*}}\right)+O\left(\sqrt{\frac{\ln M}{n}}\right)
\end{gathered}
$$

regularization K, ealy-stopeing T
\rightarrow each give a degree of freedom: due

Data contamination $E_{\text {in }}, E_{\text {test }}, E_{\text {we }}$ $>$ Optimistic (deceptive) bias in estimating E out Training set: totally contaminated
Test sot: totally dean
Validation set "slightly contaminated"
Cross-Validation

$$
E_{\text {out }}(g) \approx \underset{(\text { small } k)}{E} \underset{(\text { largo } u)}{ }\left(g^{-}\right) \approx E_{\text {val }}\left(g^{-}\right)
$$

$>$ We want smell and big K.
$\mathrm{N}-1$ points for training, 1 for valuation

$$
D_{n}=\left(x_{1}, y_{1}\right) \ldots x_{2} \cos _{1}^{0} \ldots\left(x_{N}, y_{N}\right)
$$

Final hue leched from $D_{n} \cdot \bar{g}_{i}$

$$
e_{n}=E_{\text {val }}\left(g_{n}\right)=e\left(g\left(x_{n}\right), y_{n}\right)
$$

cross val error: $E_{c v}=\frac{1}{N} \sum_{n=1}^{N} e_{n}$
catch: $e_{n} s$ der't indef!

$$
E_{c v}=\frac{1}{3}\left(e_{1}+e_{2}+e_{3}\right)
$$

$$
E_{c v}=\frac{1}{3}\left(e_{1}+e_{2}+e_{3}\right)
$$

$>$ constant model has loss $E_{\text {cv }}$!

\#features but not that for away.

In practice the leave one at is mesficient as N increases Sol: Take a chunk! $\rightarrow \frac{N}{K}$ training sessions on $N-K$ points each.
Rule of thumb: 10 fold cross validation

$$
K=\frac{N}{10}
$$

Validation 10fold

Validation is not data snooping as we have accounted for it.

Max. the margin.
The sabition.
Nonlinear transforms.
(When data is ind tan sep.)

$>$ Best model before deep learning.
Dichotomis with fat mersin

- If we restrict the morgnive efta

Let x_{n} be the merest point ot the pone $w^{\top} x+b=0$

$$
\text { Technicalities } \quad\left[\begin{array}{l}
\text { Normalize } w \\
\\
W^{\top}+x_{n}+b l=1
\end{array}\right]
$$

To compote the distance:

The optimization problem

$$
\text { (1) }\left\{\begin{array} { l l }
{ \operatorname { m a x } \frac { 1 } { \| w \| } } & { \begin{array} { l }
{ \text { problem } } \\
{ \text { andlogo. } }
\end{array} } \\
{ \text { st } \operatorname { m i n } _ { n \rightarrow 1 \rightarrow N } | w ^ { \top } x _ { n } + b | = 1 }
\end{array} \stackrel { (1 . A t) } { } \left\{\begin{array}{l}
M_{i n} \frac{1}{2} w^{\top} w \\
\text { st } \\
y_{n}\left(w^{\top} x_{n}+b\right) \geqslant 1 \forall_{n}
\end{array}\right.\right.
$$

Obs: $\left|w^{\top} x_{n}+b\right|=y_{n}\left(w^{\top} x_{n}+6\right)$ //we only tare w that this is friendlier. classify correctly.
This is a Constrained Optimization problem!

- But we need equalities..: " $\stackrel{\rightarrow}{\sim}$ Add stack variables!
- This is simile to the regularization erodem

To OPTIMSE	ConstanT
Regularization $\quad E_{\text {in }}$	$w^{\top} w$
SVN $\quad W^{\top} W$	$E_{\text {in }}$

We thus, formulate the lagrangian of ar problem

$$
\begin{align*}
\longrightarrow \nabla_{w L} & =w-\sum^{N} \alpha_{n} y_{n} x_{n}=0 \leftrightarrow w \sum_{\alpha_{n} y_{1} x_{n}}^{N} \\
& \frac{\partial L}{\partial b}=-\sum_{n=1}^{N} \alpha_{n} y_{n}=0 \leftrightarrow \sum_{x_{y}}=0 \tag{1}
\end{align*}
$$

We write the dual formulation of the prodem Subsititu (1) \& (2) in $\alpha(\omega, b, \alpha)$

$$
\longrightarrow \quad L(\alpha)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_{n} y_{m} \alpha_{n} \alpha_{m} x_{n}^{\top} x_{m}
$$

where maximize ort α subject to $\alpha_{n} \geqslant 0 \quad \forall n i t, N$ cant respect and $\sum \alpha x_{1}=0$

$$
\text { to reseed and } \sum \alpha y_{n}=0
$$

The solution to the problem (quadratic programing)
We have $\max _{\alpha} \sum^{N} \alpha_{n}-\frac{1}{2} \sum_{n=2}^{n} \sum_{n=1}^{N} y_{n} y_{m} \alpha_{n} \alpha_{n} x_{n} x_{n}$ $0 \leq \alpha \leq \infty$
\longrightarrow Obs: When N is tolologe ($N>10000$) we need to ouse other heuristics to she this.

Using Quadratic programming; we get the solution $\alpha=\alpha_{1},-, \alpha_{N}$

$$
w=\sum^{N} \alpha_{n} y_{n} x_{n}
$$

UKT conditions:
For $n=1,-, N$

$$
\alpha_{n}\left(y_{n}\left(w^{\top} x_{n}+6\right)-1\right)=0
$$

There are going to be same $\alpha_{n}>0 \Rightarrow \begin{aligned} & \text { Their respective } x_{n} \\ & \text { are the Support vertus }\end{aligned}$
Support Vectors

Now we save for 6 sing any $S V$

$$
y_{n}\left(w^{\top} x_{n}+b\right)=1
$$

nonLinear Tronsformations $x \rightarrow Z$
We worn with z instal of $x_{:} z_{1}=$
Obs: \# α_{n} has noting tod s

$$
\rightarrow ん(\alpha)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum \sum y_{n} y_{m} \alpha_{n} \alpha_{m} z_{n}^{T_{n}} z_{m}
$$

$$
\begin{aligned}
& \text { wit the dimension of } \times \text { or } 2 \text {, ally } \\
& N \text { : tho cats on }
\end{aligned}
$$

N : the dothepaits.
The supers vector in " χ space

- Super vectors live in Z space
- In X space,
$0^{0}{ }^{\text {and } y}$.

SVM allows you to go very sophisticate l withal folly eying the eire of It.
$>$ Introducing: Infinite dim. spaces!
\rightarrow The kernel trick.

$$
L(\alpha)=\sum^{N} \alpha_{n}-\frac{1}{2} \sum^{N} \sum_{N}^{N} y_{n} y_{m} \alpha_{n} \alpha_{n} z_{n}^{T} z_{m}
$$

st $\alpha_{n} \geqslant 0, \sum_{n=1}^{N} \alpha_{n} y_{n}=0$

$$
g(x)=\operatorname{sign}\left(w^{\top} z+b\right) \text {, where } w=\sum_{Z_{n} \text { is } s v} \alpha_{n} y_{n} z_{n} \text { and b: } y_{m}\left(w^{\top} z_{m}+b\right)=1
$$

Given two points x and $x^{\prime} \in \notin$, get $z^{\top} z^{\prime}$?
$z^{\top} z^{\prime}=k\left(x, x^{\prime}\right)$ (the kernel)
4 d av matt it net.

Example: $x=\left(x_{1}, x_{2}\right) \rightarrow 2$ nd ada al y.

$$
\begin{aligned}
& z=\Phi(x)=\left(1, x x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right) \\
& k\left(x, x^{\prime}\right)=z^{\top} i^{2}=1+x_{1}^{\prime} x_{1}+x_{2} \alpha_{2}^{2}+x_{1}^{2}, x_{1}^{2}
\end{aligned}
$$

$$
+x_{2}^{2} x_{2}^{2}+x_{1} x_{1} x_{2} x_{2}
$$

Le trick: con we compote $U\left(x, x^{\prime}\right)$ without transforming x and x ?
Ex: Consider: $U\left(x, x^{\prime}\right)=\left(1+x^{\top} x^{\prime}\right)^{2}=\left(1+x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}\right)^{2}$

$$
=1+x_{1}^{2} x_{1}^{2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+2 x_{1} x_{\lambda_{2}} x_{2}
$$

This is an inner ρ.

$$
\begin{aligned}
& \left(1, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} \times x_{2}\right) \\
& \left(1, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{3}, x_{2}\right)
\end{aligned}
$$

The polynomial kernel

$$
\chi=\mathbb{R}^{d}, \Phi: \chi \rightarrow Z \text { is a polynomial of order } Q
$$

The equiv kernel $K\left(x, x^{\prime}\right)=\left(1+x^{\top} x^{\prime}\right)^{Q}=\left(1+x_{1} x_{1}+x_{2} x_{2}+\ldots+x_{d} x_{d}\right)^{Q}$
We con adjust coefficient: $u\left(x x^{\prime}\right)=\left(\alpha x^{\top} x+6\right)^{Q}$
Now, let's try without knowing what Z is. It con be very ugly fer $d=10, Q=100$

Let $K\left(x, x^{\prime}\right)$ be the inner ercduct in some space Z

$$
\varepsilon_{x:} u\left(x, x^{\prime}\right)=\exp \left(-r\left\|x-x^{\prime}\right\|^{2}\right)
$$

The corresponding z of this kernel is Infinite dimensiand. δ
We commute a finite inner product from on infinite dimensional space!
(taylor series for op)
Taus an example: $n(x, x)=e^{-\left(x-x^{\prime}\right)^{2}}=e^{-x^{2}} e^{-x^{2}} \underbrace{\sum_{n=0}^{\infty} \frac{2^{k}(x)^{n}(x)^{n}}{k!}}_{\text {exp }\left(2 x x^{2}\right)}$
How do we use H ?
Instead of passing $y_{i} y_{\gamma} x_{i}^{\top} x_{\gamma}$ to the quadratic programming, we pass $y_{i} y_{\gamma} u\left(x_{i}, x_{\gamma}\right)$

Express $g(x)=\operatorname{sign}\left(w^{\top} z+b\right)$ in terms of k
Depends

$$
w=\sum_{z_{n} \text { ins }} \alpha_{n} y_{n} z_{n} \rightarrow g(x)=\operatorname{sign}\left(\sum_{\alpha_{n}>0} \alpha_{n} y_{n} k\left(x_{n}, x\right)+b\right)
$$

where $b=y_{m}-\sum_{m m_{0}} \alpha_{n} y_{n} k\left(x_{n}, x_{m}\right) \quad f_{f o r n y} \alpha_{m}>0$.

Design your own kernel

C'est les condilions de Mercer.
Soft Mogin SVM
Data can be SUGHTLY non sepuable to insepcrable.

Margin Violation: A poist muyyullate the majis the ashorn...
Quantify: $y_{n}\left(\omega^{2} x_{n}+b\right) \geqslant 1-\xi_{n}, \varepsilon_{n} \geqslant 0$
Total vialation: $\sum_{n=1}^{N} \varepsilon_{n}$
Constant that ${ }^{2}$ fries
the imeñrue betwiven
The new optinization: $\left\{\begin{array}{l}\text { min } w^{\top} \omega+c \sum^{N} \varepsilon_{n} \\ \text { st } y_{n}\left(\omega^{\top} x_{n}+6\right) \geqslant 1-\varepsilon_{n} \\ \xi_{n} \geqslant 0\end{array}\right.$
We go to the haginajaia agin...
$N_{\text {au mith }}$ man fu $p^{\text {pramburs }} \xi_{i:}$

$$
\begin{aligned}
& \mathcal{L}\left(w, b, \xi_{,}, \alpha_{1}\right)=\frac{1}{2} w^{\top} w+c \sum_{n=1}^{N} \varepsilon_{n}-\sum_{n=1}^{N} \alpha_{n}\left(y_{n}\left(w^{\top} x_{n}+b\right)-1+\xi_{n}\right)-\sum^{n} B_{n} \xi_{n} \\
& \nabla_{0} L=w-\sum \alpha_{n} y_{n} \alpha_{n}=0 \\
& \frac{\partial h}{\partial L}=-\sum \alpha_{n} y_{n}=0 \\
& \frac{\partial L}{\partial \xi_{n}}=c-\alpha_{n}^{\prime 0}-P_{n}=0 \\
& \alpha_{n} \leqslant c
\end{aligned}
$$

Sothe selation cs $\left\{\begin{array}{l}\text { max } h(\alpha)=\sum \alpha_{n}-\frac{1}{2} \sum^{N} \sum^{N} \operatorname{m}_{n} m_{n} \alpha_{n} \alpha_{n} \alpha_{n} x_{n} \\ \text { st } \\ 0 \leq \alpha_{n} \leq C, \sum \alpha_{n} y_{n}=0\end{array}\right.$

$$
\rightarrow w=\sum \alpha_{n} y_{0} x_{n}
$$

which minmises: $\frac{1}{2} \omega^{\top} \omega+C \sum^{N} \xi_{n}$

Types of supeat vectors

- margin supearst vectres ($0<\alpha_{n}<c$)
$\rightarrow y_{n}\left(\omega^{\top} x_{n}+b\right)=1 \quad\left(\xi_{n}=0\right)$
- non-maggin suepert vedars ($\alpha_{n}=C$)

$$
y_{n}^{\prime}\left(w^{\top} x_{n}+b\right)<1 \quad\left(\varepsilon_{n}>0\right)
$$

$C_{\text {is defined usng corss-valilation }}$
Two tedmical dosenations $\leftrightarrows 1$ - What /f data marlinaly sce?
$\rightarrow 2-Z$: what ausithe 1 is $\left(\omega_{0}\right)$?
All geot to lad $\omega_{0} \rightarrow 0$

Radial Basis Functions (RBF)
Each $\left(x_{n}, y_{n}\right) \in D$ influences $h(x)$ based on $\overbrace{\left\|x-x_{n}\right\|}^{\text {radicle }}$
\angle closer \rightarrow, influence.
Standard form:

$$
h(x)=\sum_{n=1}^{N} \omega_{n} \underbrace{e^{-\gamma\left\|x-x_{n}\right\|^{2}}}_{\text {basis function: }}
$$

The Learning Algorithm:
(Finding ω_{i}).

- If Φ is inv $\rightarrow W=\Phi^{-1} y$ (perfect interpolation)
- Often RBF is used for classiffication.

$$
\begin{aligned}
& \left.h(x)=\operatorname{sgn}^{\sum_{n=1}^{N} \omega_{n} e^{-V} \| x_{n}-x n^{2}}\right) \\
& \left.\min (s-y)^{2} \operatorname{an}\right\rangle(y= \pm 1) \\
& h(x)=\operatorname{sign}(5)
\end{aligned}
$$

REF ~KNN

- Instead of wing a gavsion, for the buss function. Lets use a portion that is line a cylinder. $(n=1)$. The bigger un the mosotior
shoulder th bess fmention

RBF with K centers
N parameters, $\omega_{0},-, \omega_{N}$ babel a N datapeoits.
Sal: Use $K \ll N$ centers: μ_{1}, M_{k} instead of $x_{1, \cdots} x_{N}$

$$
\left.h(x)=\sum_{k=1}^{k} \omega_{k} e p p t Y\left\|x-\mu_{k}\right\|^{2}\right)
$$

$\xrightarrow{\text { 1. How com } / \text { chose } \mu_{n} ?} \longrightarrow$ Min distance between each x_{n} and Its dost catriad μ_{n}. \rightarrow Chest u-means clustering.
Split $x_{1}-1, x_{n}$:No $S_{1} \ldots s_{n}$ minimise $\sum_{k=1}^{k} \sum_{x=5}\left\|x_{n}-M_{k}\right\|^{2} \quad$ NP-hord problem (2)
Find the minimum sis Jerid. we ned an

$M_{k} \leftarrow \frac{1}{1 S_{n}} \sum_{x_{n} \in S_{k}} x_{n}$
We convorene to a local minimum when depends on the $S_{k} \longleftarrow\left\{x_{n} /\left\|x_{n}-M_{n}\right\| \leq\right.$ all $\left.\left\|x_{n}-M_{k l}\right\|\right\}$ intel dostring.

RBF Network

Features:. $e^{-v\|x-\mu \mu\|^{2}}$
Nonlinear tronsparm depends in?

RBF Netwarn

Choosing V

$$
h(x)=\sum_{n=1}^{n} \omega_{n} e^{-v\|x-M n\|^{2}}
$$

Herative approach (~EM algoritm in mixture of Gaussians)

1. Fix V, solve for W
2. $F_{i x} W$, minimise error wot V

Obs: We con have a different V_{n} for each M_{n}.

RBF \& Regularization
RBF on le dow nd purely faringyluration

$$
\left.\left.\sum^{N}\left(n\left(x_{n}\right)-y_{n}\right)^{2}+K \sum_{n=1}^{\infty} a_{n} \int_{-\infty}^{\infty} \int_{-\infty}^{d h} \frac{d x}{d x}\right)^{2}\right)^{2}
$$

This is the smoothest interpolation. which solution is RBF open.

SVM nernel implements:

$$
\operatorname{sign}\left(\sum_{\alpha_{n}>0} \alpha_{n} y_{n} e^{-\gamma_{11} x_{\alpha n} n^{2}}+b\right)
$$

RBF implements

$$
\operatorname{sign}\left(\sum_{k=1}^{k} \omega_{k} e^{-V_{\| x-\sin ^{2}}{ }^{2}}+b\right)
$$

Occam's razor
Three Learning Principles $\mathcal{L}_{-2, i t}^{\text {sin }}$
(A .Einstein)
\rightarrow The razor of occam: The simplest model that fits all the data is also the most plausible. dasosabse with as
16 What is smple?
Why simple \rightarrow better?
Simpler \rightarrow better Bout performance d

Feer simple hyp then cunglex ores ae less lively to fit the data: $\frac{m_{n}(\omega)}{2^{N}}$ So when ithapeens its mare significant.

VC-dimension

- Sampling bias: If the data is sampled in a biased way, learning will produce a similarly biased atcome.
If you have a population that was not used in training, we have a sampling bios if they apes on testing.
- Data snooping - If the data has affected on step in the leaning. process, Usability to asses the outcome has ben Compromised
* Most common trap - many ways to slip.

When we thin of simple, t's in terms of h. Proof use simple in terms of H...

They ore related to the principle of counting:
l bits specify $h \rightarrow h$ is one of 2^{2} clements of H
Exception: SUM loons camplexbet is one of few.

Examples of Snooping
1.5: Example: $\Delta_{\text {rios }} \Delta_{r-1} \rightarrow \Delta_{\text {re }} \Rightarrow$ Normalize

Note: you can fave into accent info you have of f (sym in -2,i, facer), wile yo int loon at D.
2.- Trying one model after the other ON THE SAME DATASET, you will centrally succeed.
$>$ If you torture the data long enough, It will confess.

- VC dimension of the taal leaning model.
- May include what others tried! /1 This paper says that SUM with $\beta=1 / 2$ is effect!
-The problem is matching for a Particular dataset t
Bayesian Learning
from the east value af $\underbrace{D_{\text {train. }} D_{\text {test }}}_{\text {now. }}$
Wrong order!
You give the mean and voc
of the test set to the argo.

We extend probability to calculate $P(D \mid h=f) \quad$ livelihood prior

$$
\rightarrow \underset{\text { posterior }}{P(h=f \mid D)}=\frac{P(D \mid h=f) P(h=f)}{P(D)} \propto P(D \mid h=f) P(h=f)
$$

- Key: The prior is an assumption that ion be wrong.

Knowing the prior we con find the most probable 1 given the data. Can we really calculate $P(n=\delta)$?
Aggregation
Combining many models h_{1}, h_{T} that were trashed on D.
Tactics $\Gamma_{\text {TaMe a vote. }}^{\text {Tame an average }}$ (Clos sf. . $>$ ensemble learning

Aggregation an be done

1. After the fact \rightarrow combines existing salufiaus

2-Befure the fact \rightarrow creates solutions to be combined
\longrightarrow Boosting: create h_{1}, , h_{T} which se

We cure about misclasafications in D
Each model is weighted:

$$
g(x)=\sum^{T} \alpha_{t} h_{t}(x)
$$

We choose α_{t} so mnimze the ora on the agogryated dalai

