
Application of Machine Learning Techniques for
Book Genre Classification

Final project for the course Mining of Large Datasets 2022 at Télécom Paris

Rodrigo Calzada Haro Alex Elenter Thibaud Labat Guillermo Toyos Marfurt

Abstract—This work studies the application of different ma-
chine learning techniques, specifically in the domain of natural
language processing (NLP), for classifying the subject of a text.
For this project, the content of different books will be processed
using NLP tools to feed different algorithms, such us decision
trees, binary bayes classifiers, linear and logistic regressions, and
neural networks. Our main conclusion is that NLP requires more
complex techniques, however decent results have been achieved
using SVC and neural networks trained with tf-idf features.
Using neural networks, we obtained an average 0.71 F1-score
for classifying 21 different subjects.

I. INTRODUCTION

Nowadays, the analysis of big data has become of
paramount importance for taking decisions, discovering rela-
tionships and creating solutions.

In this work, we tackle the problem of book classification.
It might be tedious to manually read an entire book to classify
it based on its subject. And sometimes it’s hard, even for the
author, to assign a precise subject to their book, as this decision
might affect its reach and target audience. Additionally, there
are books which are hard to classify, and fit into multiple
subjects.

Because of this, we found this problem challenging and
compelling enough to aboard it on the final project of this
course.

Our objective is, given the content of a book, perform the
classification task of determine the subjects of the book. For
achieving this, we use multiple machine leaning algorithms -
such as decision tree, naive Bayes classifier, neural networks,
support vector classifier, linear regression, logistic regression
and random forest - and we compare their results.

The rest of this work is organised as follows: Section II-A
explains the dataset used, how the data was fetched, pre-
processed and the techniques used for extracting features. In
section III we show the different machine learning techniques
we applied and study their results in section IV. Finally, in
section V we give some conclusions and show future lines of
work and points to improve.

II. DATA FETCHING AND PROCESSING

A. About the dataset

For the experimental evaluation we used the a dataset of
books provided by the Gutenberg Project [3]. This dataset is
composed of a catalogue of 60’000 free e-books in UTF-8

Figure 1: Distribution of books according to publication date.

format including different metadata elements such as: title,
author, date of release, language, and subjects.

B. Data exploration

In this section we study some of the key characteristics of
the dataset, its weak points, and the value distribution of the
metadata.

Regarding the publication date, in figure 1 we observe that
the publication date of most books go are around 1990 and
2010. This is an important characteristic of our dataset: We
are working with books from 10 to 30 years ago. As language,
evolves over time, we expect that our models will specialise
in classifying books of this period and are not going to be as
effective for classifying books from the mid XX century or
older.

One of the main concerns of this dataset, which could
impact the evaluation results of our model, is if they are
repeated books. This could happen as there might be multiple
editions of a book, which would then have essentially the same
content. Repeated titles could produce a bias when measuring
the accuracy of our model, as we may get the same book in the
evaluation and training samples, Figure 2 shows the number
of books that share the same title. We can see here that most
of the titles only appear once (99%). So we decided to remove
these duplicates.

Lastly but most importantly, we study the distribution of the
book subjects. Figure 3 shows the distribution of the different



Figure 2: Number of unique and duplicate books. Although
cleaning is necessary, the loss of information is not noticeable.

Figure 3: Number of times each topic appears in a book.
Limited to the 100 most common.

subjects. We observe that they are not evenly distributed as
some subjects have a bigger count by two orders of magnitude.
Additionally, we consider that some subjects are semantically
less relevant. For instance, we are not really interested in
classifying books by the label ”California” or ”1775-1783” but
rather classifying by ”Drama”, ”Science fiction” or ”Mystery”.
This is of course a subjective assessment, other scientists may
differ in this point and obtain different results.

C. Data cleaning

We filtered this dataset, taking only books in English, and
which their metadata is complete (i.e we removed null values).
After filtering, we ended up with a collection of 20’000
English books with appropriate metadata values.

Additionally, the books needed to be pre-processed: for each
book, we removed their first and last pages that included
informative and legal content of the Gutenberg Project and
are not part of the book itself. After that, we removed stop-
words (such as punctuation signs, connectors, articles, etc.)
using NLTK [1].

D. Feature extraction

1) Subjects: Taking into account what we discussed in
section II-B, we decided to make a selection of the subjects
that we thought that are most significant to classify while

Figure 4: Number of times each topic appears in a book.
Limited to the 100 most common.

taking in consideration the amount of books that are available
for these subjects. That is, we handled the data imbalance
by selecting the most significant subjects and down-sampling
the ones that had the biggest book count. Figure 4 shows the
distribution of this new sample. Despite data imbalance was
reduced considerably, it is not completely balanced. We con-
sider this level of imbalance shouldn’t affect the performance
of our algorithms due to the metrics and methodologies applied
in the following sections.

After this, we have for each book, a list of subjects. We built
a column for each subject and applied a one-hot encoding. As
a result, we have for each book a column which points out if
the book is of a certain subject or not. This let us focus on
analysing the subjects that we consider the most relevant. For
instance, as we’ve observed in figure 4, classifying by the
”fiction” label might lead to data imbalances. By using this
encoding we handle this imbalance by not considering certain
subjects as features for the different algorithms.

2) Book content: For extracting features from the content
of each books. We tried two different approaches tf-idf, which
we have seen during the course, and Word2Vector [2].

For applying tf-idf, we used the TfidfVectorizer class of
Scikit-learn [5], which analyses a set of documents, here each
document is a book. After analysing the corpus, a matrix
is created where each columns is mapped to a feature and
each row is a book. The nature of each column depends
on the parameters used, but each one will be an expression
found in the corpus. Finally, the cell (i, j) will be set to
tf(i, j)

∏
idf(i, j), this represents the product of how frequent

expression i appears in book j times a number that grows
inversely to the number of times the expression appears in the
corpus. We will now describe the main parameters used for
instantiating the TfidfVectorizer. Here is how a TfidfVectorizer
object is created:

Listing 1: creating a TfidfVectorizer instance
t f i d f v e c t o r i z e r = T f i d f V e c t o r i z e r (

. . .
s t o p w o r d s = ’ e n g l i s h ’ ,
ngram range = ngram range ,
m a x f e a t u r e s = m a x f e a t u r e s ,
max df = max df )



Stop words are presumed to be uninformative in repre-
senting the content of a text, and they may be removed to
avoid them being construed as signal for prediction, setting
this parameter to English means we will use the built-in
dictionary of stop words. The n-gram range parameter is
a tuple (i, j), this means tf-idf will search for expressions
containing from i to j words. The max features parameters
is self explanatory. Finally, the max df is set to a number
between 0 and 1, let’s suppose it is set to 0.8, then the model
will not take into account expressions that appear in more than
80% of the texts, we can think this expressions as stop words.
For defining the hyper-parameters of the tf-idf vectorizer we
empirically tried with different combinations and tested how
their performance impacted on the different models while
also taking into consideration the execution time that was
needed to generate the tf-idf matrix. By doing this, we set the
parameters to: max df = 0.8, max features = 1000 and
n − gram range = (1, 1). The last one means that features
are composed of single words.

On the other hand, Word2Vector tries to accomplish the
following: Given an arbitrary value d, create a vector space Rd

such that words that are semantically ”similar” have a small
distance in this space. By semantically similar, Word2Vec does
a contextual similarity strategy: Training a neural network
which maximises the likelihood of a word appearing in a
certain context. That is, the relationships of words are learnt
by the company they keep.

An important observation is that once that this word vector
map is generated. It can be used in any context. If it has
been trained in a diverse enough dataset, the word embedding
should be usable in multiple different context. For our project,
we decided to use the public word vector embedding provided
by the Standford’s GloVe project [6]. Where we used the
version where d = 25

However, there is a problem when we apply this embedding
to books: the number of features we will get will have the size
d∗n where n is the number of words. So it becomes infeasible
to use many words as features. Because of this, a reduction
strategy must be applied.

In this project we tried for each paragraph, calculate an
average vector according to the words present in it. This lets
us take as features a vector of dimension d for each paragraph.
We acknowledge that this is a rather basic strategy and more
complex algorithms exist such as Doc2Vec [4].

III. DATA MINING

A. Baseline (Binary Naive Bayes)

For comparing the performance of each algorithm, we
establish a minimum expected performance by using the Naı̈ve
Bayes classification algorithm, as we consider that it is the
simplest algorithm that could output acceptable results and
is computationally light to train. We used the SciKit-Learn
implementation of the Naive Bayes [5].

B. Linear methods

With the hope of getting a better performance than the
binary naive Bayes classifier, we decided to start with very
known classifiers.

• Linear regression classifier. The obtained values after
applying the tf-idf transformation has been used as pa-
rameters to train a model with a discrete output that can
take two values: 0,1. To use the model as a classifier, the
tf-idf values of a new book are used as input. If the output
of the model is lower than 0.5, the output is considered
a 0. While, if the result is higher than that threshold, we
consider it a 1.

• Logistic regression classifier. This function is a classifier.
Therefore, it is able to directly predict whether the output
is 1 or 0.

• Support-vector classifier. The same situation as the former
one, it produces a discrete output between 0 and 1.

The process to obtain the classifier of the three of them is
similar. We have used the implementation of Scikit-learn of
each of them.

Before creating the models, the dataset has been divided
between train and test. As X train, the tf-idf values are used.
The Y train allows us to establish whether a book can be
classified into a category or not.

We want to create binary classifiers. Therefore, it is not
feasible to predict all the categories of a book with a single
model (the set of possible combinations of categories would
be huge). So, instead of using a single model to predict all the
categories, we created a model for each of the categories. This
way, our models can tell us whether a book can be classified
into a category or not.

The results are going to be presented at the end in a
comparison between the different techniques of prediction.
However, it can be said that these first approaches performs
already much better than our baseline model in the majority
of the categories.

C. Decision Trees

We decided to use decision trees for predicting the genre of
the books, which has the main advantage that we can easily
visualise which are the key words used to classify. Moreover,
it also allows us to see which path a specific vector followed
to be classified.

For example, figure 5 and figure 6 show the decision
trees for the cooking and mystery classifiers respectively.
It’s interesting to observe that the words ”murder”, ”police”,
”secret” and ”watching” are used to classify mystery books,
meanwhile the words ”add”, ”butter”, ”served”, ”sugar” and
”food” are used by the cooking classifier. In addition, we can
observe that the classifier for mystery has a lot more depth
and branches. This highlights that there are subjects that are
much more complex to classify than others.

D. Neural Network

We implemented two different Neural Network architectures
to solve our classification problem. The first one is a multi-



Figure 5: Decision tree to classify books by cooking or non-
cooking.

Figure 6: Decision tree to classify books by mystery or non-
mystery.

Figure 7: We can observe over-fitting around epoch 3 and
onward, as the loss function evaluated on training data diverges
from the loss of validation data.

class classifier, which tries to predict if a book belongs to each
category in one pass. The second architecture we considered
is a binary classifier, duplicated for each category (so we have
as many instances of this model as the number of categories
we have).

The multi-class classifier is a classic Feed-Forward Neural
Network model, taking as input a tf-idf feature vector of size
1000 (see above to know how it is generated), with two hidden
layers of size 50 with ReLU activation, with finally an output
layer of size 21 (as we only consider here the top 21 categories
for our books) with Softmax activation. The shape of the
network is classic enough not to explain it, whereas the size of
each hidden layers has been chosen so that over-fitting does not
occur. To know whether we have over-fit our model, one can
plot the figure of the Loss function both for the training data
set and the validation data set, against the number of elapsed
epochs of model training (see figure 7). If the loss function
evaluated on training data is well under the loss of validation
data, there is over-fitting. We gradually decreased the number
of coefficients in our model, by reducing the number of hidden
units, so that it does not happen.

The binary classifier model we used, trained and used fully
independently for each category we wanted to predict, has
the same structure than the multi-class one. We reduced the
number of hidden units : The first hidden layer has 20 units,
when the second has 10. Those numbers were chosen with a
trial-and-error approach with the goal to reduce over-fitting,
as stated above.

When the models are trained, either once for the multi-class
classifier or multiple times for the binary classifier (one per
category), we can predict the category of a book by feeding the
models with the tf-idf vector computed from a given text, and
using a threshold defined beforehand (once and for all ; one
threshold for each category) to determine if the output of the
network, which is in the range (0,1), is negative or positive for



Figure 8: For the ”Juvenile fiction” category, this is the F1-
score for a given activation threshold.

Figure 9: F1 scores obtained in each category for both models,
with best chosen activation thresholds.

our classification problem. The performance of the network,
and the number of true/false-positives/negatives, depend on the
choice of the threshold. Such a plot of F1-score depending on
the threshold is plotted on figure 8.

For each category (whether we use the binary or multi-class
model), we computed the F1-score of each model for many
thresholds in the range (0,1), and keep the thresholds giving
the best scores. We keep these threshold values and see them as
coefficients of our model for solving the given classification
problem. The computed scores are shown in figure 9. The
average F1 score (for each category) is 0.677 for the multi-
class model and 0.711 for the binary models.

Figure 10: F1-score for the classifiers of each subject using
different algorithms and features generated by tfidf

IV. RESULTS

A. Tf-idf

The results are presented in figure 10. The F1-score of the
different models has been used for the evaluation. We have
chosen this metric because it correctly handles the dataset
imbalance and is appropriate for a binary classification task.
The scikit-learn implementation has been used [5].

The naive-bayes classifier obtains the worst result. The
positive point is that we can conclude that choosing this model
as the baseline can be considered a good strategy.

Regarding to the gradient-based methods, we can see an
improvement on the performance. The expected results are
good in general, with several categories outstanding over the
others. We can see that the category other is difficult to
classify. This can be easily explained. In this category, the
books that are not included in other categories are selected.
Taking into account that it can exist no relationship between
the content of these books, it is intuitive to conclude that the
amount of words obtained from the tf-idf for this category
can be very broad, so we cannot use them to predict books
classified as other. Regarding to the algorithms, the one that
stands out is SVC. This was the expected result. The linear
and logistic classifiers are similar. To sum up, the difference
is reduced to the use of a sigmoid function at the end or not.
However, SVC not only separates the results, but also is able
to establish the threshold that better allows to classify between
different values. In our domain, SVC defines the average limit
to decide whether a book belongs to a category or not. This



Figure 11: F1-score for the binary classifiers of each subject
using different algorithms and features generated by word2vec

limit is more accurate, so, the results for the test set, which
are the ones presented in the scatter plot, are better for this
algorithm.

B. Word2Vector

Figure 11 shows the f1-scores of each classifier coloured by
the type of model used. We couldn’t apply SVC and random
forest due to the long training time of these algorithms under
a high number of features.

We observe that for almost all subjects (except cooking,
science and others) all models perform relatively poorly. We
argue that the technique used for extracting the word vector
features, average vector by paragraph, might not be effective.
We conjecture that the great results obtained for cooking and
science subjects are due to the fact that these type of books
tend to use a more specific range of vocabulary (for example,
cooking books tend to include mainly kitchen/food related
terms in each paragraph. On the other hand, an adventure book
could virtually talk about anything on each paragraph.) thus
the average vectors could be more characteristic of the book’s
subject.

V. CONCLUSIONS

The experimental results have proven that the task of book
classification is very challenging. Considering the F1-Score
metric, and starting from a baseline (Bayes classifier) that
gives very poor results, we were able to obtain better results
using other well-studied algorithms such as SVC, Decision
Trees and Neural Networks. However, these algorithms did
not yield good results in every scenario studied.

On the other hand, at a higher computational training
cost, the neural networks performed fairly better than the
baseline and the decision tree algorithm. This shows that it
is required to use more powerful tools to successfully tackle
this classification task.

In conclusion, the task of NLP remains a challenging one
and is still being studied to this day. Even if we were able
to obtain decent results using basic techniques, more complex
algorithms are to yield better results.

Finally, we consider that this project has been a great
opportunity for the authors of this work to learn the subjects
seen in class and broaden their knowledge on the NLP area.
It also provided the opportunity to discover the challenges of
solving a data science problem in a practical way. From the
obtaining of the dataset to the analysis of the results given by
the machine learning algorithms. We consider this has been a
very enriching experience.

A. Future lines of work

We have identified multiple lines of work that could improve
and enrich our approach to solving this classification problem:

1) Applying other text document encoding techniques such
as Doc2Vec [4]. With this, we might extract more
effective features

2) Use transformer neural networks. Which has been
proven that they are a powerful tool for natural language
processing which throw great results in text classification
tasks.

3) Consider the use of clustering techniques to see if the
features extracted can be grouped into relevant groups
that take on account the subject of the book.

B. Acknowledgements

We thank Project Gutenberg for providing the free books
we used for this experiment and Télécom Paris for letting us
to use their servers for running the different experiments.

C. Contributions

Regarding the contributions of each member, Thibaud was
responsible for creating the work environment (setting up
a real-time collaborative Jupyter Lab notebook on a server
at Télécom), and doing the Neural Network part with tf-
idf features. Rodrigo worked on the text feature extraction
using tf-idf, hyper-parameter tuning and computation of linear,
logistic and SVC models. Alex did the decision tree exper-
iments and hyper-parameter adjustment of tf-idf. Guillermo
was responsible for creating and cleaning the dataset from the
Gutenberg project, defining the baseline, exploring the dataset,
plotting the decision trees, and designing the algorithms and
feature extraction techniques with word2vec.

REFERENCES

[1] Steven Bird, Ewan Klein, and Edward Loper. Natural language pro-
cessing with Python: analyzing text with the natural language toolkit. ”
O’Reilly Media, Inc.”, 2009.

[2] Yoav Goldberg and Omer Levy. word2vec explained: deriving
mikolov et al.’s negative-sampling word-embedding method, 2014. cite
arxiv:1402.3722.



[3] Project Gutenberg. Project Gutenberg. https://www.gutenberg.org.
[4] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences

and documents, 2014.
[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[6] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543, 2014.


